
Ecole polytechnique Nantes Ecole Central Nantes

Application and development of inverse

theory to Shock Tube problem

by

Mohd Afeef BADRI
Guided by:

Dr. Yann FAVENNEC & Dr. Ahmed Ould El MOCTAR

A thesis submitted in partial fulfillment for the

degree of Master Sciences in Thermal Science and Energy

(Mécaniques Appliquées Spécialité Thermique-Energétique)

Jury:

President: Dr. Ahmed Ould El MOCTAR LTN,Ecole Polytecnique Nantes

Dr. Bertrand GARNIER LTN,Ecole Polytecnique Nantes

Dr. Yann FAVENNEC LTN,Ecole Polytecnique Nantes

July 2015

University Web Site URL Here (include http://)

“If we knew what it was we were doing, it would not be called research, would it?”

Albert Einstein

Abstract

Dr. Yann FAVENNEC & Dr. Ahmed Ould El MOCTAR

Department of Thermique Energetique

Master of Science

by Mohd Afeef BADRI

An inverse fluid dynamics problem has been investigated for a non linear compressible flow

phenomenon in a shock tube. There exists no a prior knowledge of initial conditions for the Shock

Tube, and these conditions have been retrieved using inverse problem theory. This problem being

categorized as parameter estimation problem in inverse computational science, is solve using only

one experimental measurement inside the shock tube. Many inverse algorithms based on different

optimization techniques have been proposed to solve the in hand problem. A sensitivity analysis

of these different methods has been presented. In order to enhance the performance of the

optimizers for the concerned problem, two new hybrid optimizers, PSO1CG2 and PSO2CG1

have been developed and tested.

Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Acknowledgements

It would be an honor to express my deep sense of reverence and gratitude to Dr. Yann

FAVENNEC, my guru, for introducing me to fascinating world of inverse problems in general

and in research work in particular. His methodology of giving absolute freedom at par with

excellent work environment and exposure helped me a lot in acquiring knowledge in the field

of code development in inverse computations. I would equally like to thank my co mentor Dr.

Ahmed Ould El MOCTAR for encouraging me both at educational and personal levels. His

advice’s and experience in research helped me glide smoothly throughout the span of my thesis.

I am deeply indebted of both my supervisors for guiding me through all the challenges, both

academic and personal.

I would take this opportunity to acknowledge help and cooperation provided by many people in

planning and execution of this research. I am thankful to Mr. Manoj Joishi and Miss Smriti

Dhingra with whom I worked to develop the initial EULER solver. I would also thank my

friends Mr. Nitin Kukreja, Mr. Shailesh B. G, Mr. Anurag Singh, Mr. Geetesh Waghela and

Miss Ketaki Mishra for always being there in time of any academic or personal help.

Finally I will always remain in debt to my parents and my brother for limitless love, care and

support that they have always provided me with.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

Abbreviations viii

Symbols ix

1 Introduction 1

1.1 Introduction to Inverse problems . 1

1.2 Introduction to CFD . 2

1.3 Introduction to inverse fluid dynamics . 3

1.4 Introduction to Inverse problem in a shock tube 3

2 Shock Tube 4

2.1 Introduction . 4

2.2 Physical description of Shock tube . 5

2.3 History of Shock tube . 5

2.4 Qualitative analysis of flow inside shock tube . 7

2.5 Mathematics Involved in shock tube . 8

2.6 Analytic solution for Euler equation . 10

2.7 Numerical Modeling of Euler equation (CFD) . 10

3 Inverse problems 11

3.1 Inverse problems an introduction . 11

3.2 Inverse problems- well posed or ill posed . 12

3.3 Inverse problems- types . 12

3.4 Inverse problem- solving inverse shock tube problem 12

3.4.1 Cost function . 14

3.4.2 Method to solve the inverse shock tube problem 16

3.4.3 Stopping criteria . 17

4 Optimization 18

4.1 Optimization- Introduction . 18

4.2 Zero order n-dimensional optimization . 19

4.3 Gradient type n-dimensional optimization methods 19

iv

Contents v

4.4 Gauss-Newton optimization . 20

4.5 Simplex or Nedler-Mead optimization . 20

4.6 Particle swarm optimization . 21

4.7 Steepest gradient optimization . 22

4.8 Conjugate gradient optimization . 23

5 Results, Discussions and Conclusions 24

5.1 Problem Data . 24

5.2 Some prerequisite results . 25

5.3 One parameter estimation problem . 27

5.4 Two parameter estimation problem . 27

5.4.1 Gauss-Newtons algorithm . 28

5.4.2 Nedler-Mead algorithm (Simplex Method) 29

5.4.3 PSO algorithm . 31

5.4.4 Steepest gradient method . 32

5.4.5 Conjugate Gradient Method . 33

5.5 Summary of two parameter estimation . 33

5.6 Hyprib algorithm . 34

5.6.1 PSO1CG2 . 34

5.6.2 PSO2CG1 . 35

5.7 Conclusion . 36

A Flow Charts 37

A.1 Terminology . 37

A.2 CFD EULER code . 38

A.3 Program MODGEN . 39

A.4 Program USERDATA . 40

A.5 Program GRIDGEN . 41

A.6 Program EULER . 42

A.7 Exact solution solver- Program EULER EAFZ 45

A.8 Inverse Solution solver- Program INVERSE ISTP 48

B Algorithms 49

B.1 Gauss Newton Algorithm . 49

B.2 Simplex Algorithm . 50

B.3 Particle swarm optimization . 51

B.4 Steepest Gradient Method . 51

B.5 Conjugate gradient Method . 52

B.6 Newton Rapsons Algorithm . 53

B.7 Algorithm for code EULER AFZ . 53

C EULER Solutions- Exact and Numerical 54

C.1 Analytic solution for Euler equation . 54

C.2 Finite volume formulation for Euler equation . 57

C.2.1 Flux discretization . 57

C.2.2 Runge-Kutta method for temporal discretization 58

C.2.3 Artificial viscosity (slope limiting) . 59

C.2.4 Steps involved in FVM solution for Euler equation 60

Bibliography 62

List of Figures

1.1 Forward and Inverse model . 1

1.2 Theory, Computation and Experiments . 2

2.1 Shock Tube at t = 0 and t = t . 5

2.2 Historic shock tube . 6

2.3 Modern Shock tube . 6

2.4 Working Shock Tube . 7

3.1 Shock tube with sensing equipment . 13

3.2 Inverse and forward shock tube problem . 14

3.3 Cost function for one parameter estimation . 15

3.4 Cost function for 2 parameter estimation . 16

4.1 Simplex method different operations . 20

4.2 Particle movement in PSO . 22

5.1 Grid convergence of forward model . 25

5.2 Sensitivity analysis . 26

5.3 Simplex Results 1 . 29

5.4 Simplex Results 2 . 30

5.5 Convergence in PSO 20 particles algorithm . 31

5.6 Convergence in PSO 10 particle algorithm . 32

5.7 Steepest Gradient and Conjugate Gradient Algorithm 32

5.8 Visual Summary of two parameter analysis . 33

5.9 Hybrid optimizer PSO1CG2 . 35

5.10 Hybrid optimizer PSO2CG1 . 35

C.1 (x, t) plot for flow inside shock tube . 54

C.2 Results from developed FORTRAN code for exact Euler solution in a shock tube 56

C.3 Finite volume cell terminology . 57

C.4 Results from FVM code EULER AFZ . 61

vi

List of Tables

2.1 Mach numbers for diffrent initial pressure diffrence in a shock tube (Pl/Pr) . . . 6

5.1 One parameter analysis: Pressure . 27

5.2 One parameter analysis: Density . 27

5.3 Simplex algorithm results . 30

5.4 PSO results . 31

5.5 Steepest Gradient algorithm results . 33

5.6 Conjugate Gradient algorithm results . 33

5.7 Rating of different algorithms for ISTP . 34

5.8 Results of hybrid optimizer PSO1CG2 . 34

5.9 Results of hybrid optimizer PSO2CG1 . 35

5.10 Rating of hybrid algorithms . 36

vii

Abbreviations

1D 1(one) Dimensional

2D 2(two) Dimensional

AKA Also Known As

BFGS Broyden Fletcher Goldfrab Shanno

CFD Computational Fluid Dynamics

CFL Courant Friedrichs Lewy

CG Conjugate Gradient

DFO Derivative Free Optimization

DFP Davidson Fletcjer Powell

FDM Finite Difference Method

FVM Finite Volume Method

GN Gauss Newton

GUI Graphical User Interface

ISTP Inverse Shock Tube Problem

NM Nedler Mead

PDE Partial Diffrential Equations

PSO Particle Swarm Optimization

RK Runge Kutta

SG Steepest Gradient

viii

Symbols

a speed of sound m/sec

al speed of sound in left section m/sec

ar speed of sound in right section m/sec

a1 speed of sound in region 1 m/sec

a2 speed of sound in region 2 m/sec

ae speed of sound in expansion fan region m/sec

C characteristic line m

C− left running characteristic line m

C+ right running characteristic line m

C1 coefficient in PSO

C2 coefficient in PSO

dk displacement direction m

d0 initial displacement direction m

E total energy J

E Error vector

F flux vector

F⊥J interface flux through interface

F⊥L interface flux towards left cell

F⊥R interface flux towards right cell

Gbest global best position

H total enthalpy J

J jacobian matrix

j cost function

j(ψ) cost function

J (Ymo) global cost function

l length m

L2 euclidean

M mach number

Ms mach number of normal shock

ix

Symbols x

Mmax maximum mach number

n unit normal

p pressure N/m2

pl left section pressure N/m2

pmo forward model pressure N/m2

pbest particles best position N/m2

pr right section pressure N/m2

p1 pressure in section 1 N/m2

p2 pressure in section 2 N/m2

pl pressure in expansion fan N/m2

Rn region space

R1 random coefficient in PSO

R2 random coefficient in PSO

R real Numbers

S Sensitivity matrix

T temperature K

Tl left section temperature K

Tr right section temperature K

T1 temperature in section 1 K

T2 temperature in section 2 K

Te temperature in expansion fan K

t time sec

u flow velocity m/sec

ul left section flow velocity m/sec

umo forward model flow velocity m/sec

ur right section flow velocity m/sec

u1 flow velocity in section 1 m/sec

u2 flow velocity in section 2 m/sec

us velocity of normal shock wave m/sec

us velocity in expansion fan m/sec

u⊥ velocity at the face m/sec

U state vector

U t state vector at time level t

U i cell averaged states

V px velocity vector of particles

x0 diaphragm location m

xdata sensor location m

xpx position vector of particles

Symbols xi

Y measurements vector

Ymo forward model values vector

Y ′mo derivative in model space

α step size

ε Venkatakrishnan coefficient

ρ density kg/m3

ρl density in left section kg/m3

ρr density in right section kg/m3

ρ1 density in section 1 kg/m3

ρ2 density in section 2 kg/m3

ρe density in expansion fan kg/m3

βk coefficient in RK method

β coefficient in CG method

ζi trial functions

∀ for all

λ eigen value

ν eigen vector

ψ parameter vector

χ simplex

χ initial simplex

ψ minimum parameter vector

ψ0 first guess parameter vector

ψR reflected parameter vector

ψC contracted parameter vector

ψE Expanded parameter vector

ψm mid point parameter vector

ψu best point parameter vector

ψv good parameter vector

ψw worst parameter vector

Ω finite volume m3

δt perturbation in time sec

φj reconstruction limiting coefficient

ω coefficient in PSO

M Ui state gradient at cell /m

M Sj interface surface area m2

M Sj interface surface area m2

M x cell size m

Symbols xii

M j(ψ) cost function gradient

∂
∂x partial derivative in x direction

∂
∂y partial derivative in y direction

∂
∂t partial derivative in time

d
dt total derivative in time

Chapter 1

Introduction

Outline

This work involves solving inverse fluid dynamics problem for a non linear flow phenomenon

inside of a shock tube. Section 1.1 introduces the concept of inverse problem and section 1.3

introduces more specific class of inverse fluid dynamic problem. In inverse problems a strong

background of forward modeling is needed, in light of this, section 1.2 introduces computational

fluid dynamics as tool for forward modeling. Finally in section 1.4 inverse shock tube problem

is introduced as a real world application of inverse problem theory.

1.1 Introduction to Inverse problems

“Inverse problem” is the branch of science that deals with calculating from effect (observations

or experimental data) the cause that led to the effect. The name inverse problem arises from

the fact that it starts with results and then processes the cause. This is inverse of any forward

modeling (refer Figure 1.1), which begins with the cause and then processes the results. In

general outline inverse problems are used to convert the observed measurements (experimental

data) into information about a physical object or a system.

Data Model Solution

(a) Forward problem

Solution Model Data

(b) Inverse problem

Figure 1.1: Difference between a Forward and Inverse Model

1

Chapter 1. Introduction 2

The term “inverse problems” has been steadily and surely gaining admiration and popularity

in modern science since the mid 20th century. Inverse problems find their application in several

scientific fields, including, thermal sciences, fluid Dynamics, medical imaging, Nuclear Sciences,

astrophysics, image processing, sub-surface prospecting, and geophysics [1].

Generally inverse problems are more difficult than the simply reversing the forward model. To

cite an example, though Earth’s gravitational field is governed by Newtons law of gravitation,

inverse problem involved in finding sub-surface structure from perturbations in gravitational

field is an extremely challenging. Well built inverse problem solution requires specially tailored

algorithms that can tolerate errors in measured data and predict the results (cause) correctly.

Numerical simulation for any forward problem may or may not be well posed whilst inverse

problem is always ill posed.

1.2 Introduction to CFD

Experimental study, Theoretical study and Numerical Study (computational dynamics) are the

three possible ways for studying a typical engineering problem. These three work hand in

hand for engineering problem solutions and facts regarding them can be realized by Figure 1.2.

Computational Fluid Dynamics (CFD) is incorporation of Numerical study, science for studying

Figure 1.2: Theory, Computation and Experi-
ments

and solving problems in engineering mechan-

ics, it involves use of computers to solve or

study transport phenomena problems using

numerical techniques. Computational Fluid

Dynamics (CFD) is the science of predicting

fluid flow, heat transfer, mass transfer, chem-

ical reactions, and related phenomena (trans-

port phenomena) by solving the mathematical

equations which govern these processes using

numerical techniques.

Computational Fluid Mechanics enables us to

go much beyond what can be done analyti-

cally solving fluid flow or heat transfer prob-

lems. We as Engineers can easily predict how

flow will behave in a pipe, or how it would be-

have for a sphere under creeping flow condi-

tions and one can easily characterize the pres-

sure drop, drag coefficient or lift generated, for such problems. But when it comes to real world

problems we face difficulty in solving such problems analytically, one such engineering problem

is: solution of a shock tube problem that is governed by complicated non-linear hyperbolic par-

tial differential equation. Solving shock tube problem by a forward model is itself challenging and

using inverse problem theory over it adds to the magnitude of challenge.

Chapter 1. Introduction 3

1.3 Introduction to inverse fluid dynamics

Inverse problems may now have been widely studied and explored in many fields of science but

it still remains in its infancy when it comes to fluid mechanics. Inverse fluid dynamics is a sub

branch of inverse problems that deals with inverse solutions for flow phenomena. Fluid dynamic

design problems generally come with a computationally expensive requirement, inverse analysis

of such problems would add to the complexity and computational cost of such problems.

Today there exist many methods to solve inverse problems, there are several articles [2–4] and

books [5–8] that have been published upto date on this subject. However there are only few

articles that cover the area inverse fluid dynamic, and those that do, often cover it as an aside

to heat transfer problems. Study of this limited resourced archive suggests a simple yet effective

method to solve inverse fluid dynamics problems, this method involves iterating the numerical

simulation until the result matches the observed set of data or is atleast close to it, often demand-

ing many iteration henceforth increasing computational cost. To cite examples that support this

statement are papers by Liu et al [3] and Knight et al [9], where the former deals with convection

problem and the latter deals with prediction of velocity and temperature for a jet in crosswind.

1.4 Introduction to Inverse problem in a shock tube

A shock tube is a device commonly used for detonation, supersonic or hyper-sonic testing. Flow

inside the tube is transient in nature and highly non-linear, governed by non-liner hyperbolic

PDEs the Euler equations. Real life flow can be simulated by solving the Eulers equations by

any computational technique (forward problem). To solve the forward problem initial conditions

of primitive variables (p, ρ, u) at t = 0 serve as input to the forward problem. To introduce the

inverse shock tube problem (ISTP), the initial conditions in the tube are no more available and

need to be formulated by inverse problem theory. Experimental data at time t > 0 is served as

input to the inverse problem.

This ISTP that concerns initial condition estimation can find real world applications, as many

shock tubes that run today still treat the initial conditions as missing data [10] and these ini-

tial conditions are approximated by some or the other method. This fact can be realized by

initiation of flow/detonation in the shock tube that takes place by rupturing of a diaphragm

and the conditions at which this rupture occurs is unknown. Knowing the initial conditions by

inverse computation will help analyzing the flow/detonation in a better manner and will also

bring improvement concerning further use of the shock tube.

In the next chapter

Now that concept of inverse problem, forward modeling and a real world application inverse

problem on shock tubes is introduced. There is a need to understand the physic and formu-

late the mathematics for flow inside the shock tube this is dealt within the following chapter.

Chapter 2

Shock Tube

Outline

Since inverse problems demand a strong background in the physical phenomenon involved, this

chapter takes into consideration, understanding of the shock tube functioning, physics and math-

ematics. Sections 2.1 and 2.2 highlight some basic facts about the shock tube and introduces

some basic terminology used in shock tube flow analysis. To develop more interest in shock

tubes and show its importance in the scientific community, history of shock tubes is traced out

in section 2.3. To understand the flow occurring in the shock tube, qualitative and mathemat-

ical reasoning of the flow inside the tube are presented in sections 2.4 and 2.5. Analytical and

numerical solutions of the flow are presented in sections 2.6 and 2.7 respectively.

2.1 Introduction

A simple yet very useful apparatus to produce supersonic flow, ever since its invention till present

years interest has been revived in this apparatus which was first developed around 1900 [11].

This apparatus, known today as a shock tube or Sods Shock tube, is one of the simplest ways

to produce a supersonic flow. Interest in studying the Sods shock tube is threefold. 1) From a

fundamental point of view, shock tubes offers an interesting framework to introduce some basic

notions about nonlinear hyperbolic systems of partial differential equations (PDEs). 2) From

a numerical point of view, this problem constitutes, since analytical solution is available, an

inevitable and difficult test case for any numerical method dealing with noncontinuous solutions.

3) Finally, there is a practical interest, since this model is used to describe real shock tube

experimental devices.

4

Chapter 2. Shock Tube 5

2.2 Physical description of Shock tube

Figure 2.1: pictorial representation of initial con-
figuration in the shock tube at t = 0 and waves
propagation in the tube after the diaphragm break-

down t > 0.

A shock tube consists of a simple pipe which

may be close or open ended. A diaphragm

divides the tube into two sections, initially

containing fluid (generally gases) at different

pressure conditions. The low pressure sec-

tion is termed as working section and the high

pressure section as driven section. Normally

working section length can exceed driven sec-

tion lengths up to ten times or more. Rup-

turing the diaphragm ensures flow character-

ized by discontinuties i.e shocks, with expan-

sion wave moving towards high pressure sec-

tion and a normal shock moving towards low

pressure section; these waves are separated by

a region of constant velocity flow (Region (1) & (2)), refer Figure 2.1 for pictorial representation

of this phenomenon. Conventionally shock tubes use a constant cross sectional area with air

being the medium of driven and working section.

2.3 History of Shock tube

The use of Shock tube has varied over time since the time of its invention, and it may be

interesting to trace back its history. First shock tube was developed due to growth of interest

in study of propagation speeds of flame fronts and detonation waves. This led to construction

of the first shock tube by Vieille [11] in France (1899). He studied detonating with shock waves

in a 22 mm diameter, 20 ft long tube. In his experimental work, Vieille could measure shock

velocities that were twice the speed of sound in air. Despite of this breakthrough, shock tube

was neglected for the nearly next forty years, until W. Payman and W. C. F. Shepherd [12]

published the classic paper in which shock tube was investigated in details. This work found

its application in problem of safety in mines and shock tube was once again reason of interest

in the field of detonation. Contrary to techniques used today in a shock tube thin sheet copper

was used as a diaphragms and rupturing was initiated by a sudden rise in pressure across the

diaphragm. Thus, back then it was impossible to know the pressure difference at which the

diaphragm ruptured. The theory driving the flow inside shock tube was verified first time during

the experimental study on use of shock tubes in aerodynamics by B.D. Henshall [10].

In 1949, it was realized that quasi-steady region possessed by the shock tube (region (1) &

(2), Figure 2.1) can be used to study subsonic and supersonic flows, making shock tube a

conveniently simple aerodynamic wind tunnel. Shock tubes were also frequently used for studying

transient flows. Using slotted walls with shock tubes made it possible to conveniently study

transonic phenomena inside the shock tube. In 1952 at Princeton university shock tubes were

used extensively to experiment flow in Mach number range of 0.86 to 1.16 [13].

Chapter 2. Shock Tube 6

Figure 2.2: Historic shock tube in Bristol University, Aeronautical Extension Laboratory

Theoretically infinite pressure difference across the diaphragm would produce finite Mach number

of Mmax = 1.73 (refer Table 2.1) for more accurate and complete data refer [14].

The limitation on Mach number M was overcome by using a divergent duct in the low pressure

region and supersonic Mach number of M = 4.2 was realized by Hertzberg [15] which was later

followed by hypersonic flow being produced [16].

Table 2.1: Mach numbers for diffrent initial pressure diffrence in a shock tube (Pl/Pr)

pl/pr
Shock Strength
(Static Pressure
Ratio)

Mach number be-
hind the shock Re-
gion(1)

Mach number
Behind contact dis-
continuity Region
(2)

1.0 1.0 0 0
10.38 2.89 .71 1
41.38 4.83 1.00 1.80
100 6.40 1.15 2.41
∞ 44.14 1.73 ∞

The argument presented above made it clear that, historically shock tube has always stayed

a hot topic of research and interest. Till date still shock tubes are intensively being studied,

[17–20] are some of the recently published articles in this field. Shock tubes are being used in

many leading labs as an apparatus to study detonation, Transonic, supersonic and Hypersonic

flows (refer to Figure 2.2 , 2.3 for some shock tubes).

Figure 2.3: New modern shock tube at JP Aerospace, USA

Chapter 2. Shock Tube 7

2.4 Qualitative analysis of flow inside shock tube

Diaphragm rupturing in shock tube brings about ideal unsteady flow to occur inside the tube

and the flow will be treated mathematically in the topic to follow; however, at this stage, a

qualitative survey of the process may be helpful.

Consider a conventional shock tube (shown in Figure 2.1) with closed ends to be maintained

at an idealized pressure ratio Pl/Pr occurring across the diaphragm. Rupturing of diaphragm

ensues a unsteady flow phenomena inside the tube. Expansion waves initially originating at the

diaphragm propagate towards the high pressure region the driven section. A normal shock moves

towards the low pressure region with a supersonic velocity U . This results in compression of

fluid particles in the low pressure region hence they acquire a uniform velocity u(u < U) in the

direction of normal shock. This velocity u may or may not be supersonic depending on initial

pressure difference Pl/Pr.

Consider now the driven section. The expansion fan in this area has the front side of the wave

traveling with local velocity of sound a0, whilst the direction and the velocity of the opposite

end of it depends in initial pressure difference Pl/Pr. Due to movement of expansion fan towards

left fluid particles that are initially at rest are set into motion towards right side, that is the

same direction of the shock wave. These motions in different sections of the tube give rise to

the unsteady flow with, expansion fan moving left and normal shock moving right, separated by

constant velocity regime. If a close ended shock tube is used the shock hits the walls and reflects

back traveling as a reflected shock. This phenomenon is clearly shown by Figure 2.4.

Consequences of the above mentioned flow is that compressed region behind the shock expe-

Figure 2.4: Working of a shock tube

riences decrease in density ρ and increase in temperature T than the initial density and tem-

perature; and for the region behind expansion fans i.e expanded region, its density ρ increases

and temperature T decreases than the initial density and temperature. Hence discontinuity of

density and temperature is sensed at the point were diaphragm was ruptured. Presence of this

discontinuity leads to discontinuity in speed of sound a =
√
γ<T henceforth leading to different

Mach numbers across the discontinuity.

Any point at any distance x from diaphragm. Flow record past this point would exhibit:

• A normal shock wave moving towards right, with velocity U ,

Chapter 2. Shock Tube 8

• a section of ‘quasi-steady’ uniform flow to the right moving with a velocity u,

• a density and temperature discontinuity moving towards right,

• end of expansion fan moving towards right.

This phenomenon can be noted in the Figure 2.4. Generally, there exists very good agreement

in between theory and actual shock tube flow, especially for initial pressure differences of less

than 100 : 1 [10]. It should be noted that the flow behind the contact discontinuity may not

be considered as true discontinuity, for the flow across it only density and temperature posses

discontinuities but velocity and pressure are still continuous.

2.5 Mathematics Involved in shock tube

Flow inside the shock tube is governed by a non linear hyperbolic PDEs known as Euler Equation.

In order to simplify mathematics involved, consider the following assumptions :

• the tube is of infinite length (avoiding reflection at the ends);

• the flow inside the shock tube is considered non viscous and compressible;

• the diaphragm is removed completely from the tube at t = 0.

Under these hypotheses the flow inside the tube is governed by one-dimensional Euler PDEs that

are non-linear and Hyperbolic in nature (see, [1]). These equations are the continuity equation,

the Momentum equation and the energy equation:

Continuity
∂ρ

∂t
+
∂ρu

∂x
= 0 (2.1)

Momentum
∂ρu

∂t
+
∂ρu2

∂x
+
∂p

∂x
= 0 (2.2)

Energy
∂E

∂t
+
∂Eu

∂x
+
∂pu

∂x
= 0 (2.3)

These can be written as

∂

∂t

ρ

ρu

E

+
∂

∂x

ρu

ρu2 + p

(E + p)u

 = 0 (2.4)

here ρ the density of fluid is related with the total energy E :

E =
p

γ − 1
+
ρu2

2
(2.5)

The equations can be simplified by writing it in state vector U and Flux vector F (U) as

∂U

∂t
+
∂F

∂x
= 0 (2.6)

Chapter 2. Shock Tube 9

with

U =

ρ

ρu

E

 and F =

ρu

ρu2 + p

(E + p)u

 (2.7)

This equation 2.6 is the conserved form equation of the flow. To close the set of equations we

need the additional ideal gas equation

p = ρ<T (2.8)

Constants < and γ involved in equations 2.8 and 2.5, are thermodynamic properties of the chosen

fluid. Also assume a,M and H are the local speed of sound, the Mach number and the Enthalpy

of the fluid:

a =
√
γ<T =

√
γ
p

ρ
; M =

u

a
, (2.9)

H =
E + p

ρ
=

a2

γ − 1
+
u2

2
(2.10)

Assuming the diaphragm to be standing at x0 at time t = 0 the initial conditions for the tube

may be given as

U(x, 0) =

(ρl, ρlul, El), x < x0,

(ρr, ρrur, Er), x > x0,
(2.11)

Considering quasi-linear form of the PDEs

∂U

∂t
+ J

∂U

∂x
= 0 (2.12)

with the Jacobian matrix

J =
∂F

∂U
=

0 1 0

(γ−3)u2

2 (3− γ)u γ − 1
(γ−1)u3−uH

2 H − (γ − 1)u2 γu

 (2.13)

Eigenvalues corresponding to the Jacobian matrix are given by

λ0 = u, λ+ = u+ a, λ− = u− a (2.14)

with the corresponding eigen vectors

ν0 =

1

u
u2

2

 , ν+ =

1

u+ a

H + au

 , ν− =

1

u− a
H − au

 (2.15)

Hence we can conclude that the Jacobian matrix J can be diagonalized as there exist real eigen-

values. This also means that the system of equations is hyperbolic in nature. For numerical point

of view, hyperbolic equation suggests upwinding is the simple way to calculate the solution of

such equation. For any point P (x, t) the solution can be obtained by gathering all the informa-

tion transported through the characteristics starting from poiny P and going back to regions

where the solution is already known [21].

Chapter 2. Shock Tube 10

2.6 Analytic solution for Euler equation

Shock tube being characterized by presence of multiple flow discontinuities (shocks), exhibits

variant flow physics in its different regions (Regions (L),(E),(2),(1) & (R) Figure 2.1). Each

section is governed by a separate physics, hence different empirical relations exist for each section

separately. The analytical solution of Euler equations involves solving these empirical relations

within their respective regions and combing the piece-wise results in order to give total results

of the shock tube. Analytical solutions are at utmost importance in ISTP, since the results of

these solutions will serve as input to the ISTP instead of experimental results. Hence the data

from the analytical solution is being used as pseudo-experimental data. For this purpose a in

house analytical Euler solver (EULER EAFZ) is developed. If the reader wishes to understand

the mathematics involved in development of the solver (EULER EAFZ) appendix C.1 can be

referred.

2.7 Numerical Modeling of Euler equation (CFD)

During the past decade numerous numerical method schemes have been proposed to solve the

non linear hyperbolic equations i.e. the Euler equations 2.6. In the previous section it was

proven that Euler equation possess non linearity due to presence of discontinuities in solution

(due to Shocks) and the system of equations are hyperbollic in nature. Due to this fact it

is difficult to solve the system of equations numerically. Inherited in any numerical simulation

scheme is assumption of continuity of the solution, typically near to shock these schemes produce

unwanted oscillations. Also there exist problems due to diffusion of truncation error across the

discontinuities and with each time step this error is getting worse [22].

There have been many FDM schemes that were investigated in the Sod’s classic paper on solving

non linear hyperbolic PDEs [22], in which the results indicate that none of the FDM methods

replicate the exact solution to high level of precision. Hence a FVM solver (EULER AFZ) to

solve the shock tube problem has been developed, that uses nth order Runge–Kutta scheme for

temporal discretization and Van Leers scheme for flux discretization. The solver uses concept

of artificial viscosity via Venkatakrishnan [23] slop limiters to solve the problem oscillations

associated with numerical solution flow characterized by shocks. If the reader wishes for more

detailed explanation for development of this solver (EULER AFZ) appendix C.2 can be referred.

In the next chapter

With physics and mathematical background of shock tube being detailed in this chapter, further

to formulate the inverse problem solution in the shock tube, detailed study of inverse problems

in relevance to the shock tube problem is presented in the following chapter. Mathematics and

strategy of inverse computations in the shock tube is also presented.

Chapter 3

Inverse problems

Outline

This chapter is presented in order to have in-depth understanding of how inverse problems work.

General introduction of inverse problems and a real world application of the field is presented

in section 3.1. It was introduced in the first chapter that inverse problem is always an ill posed

problem, theory in support of this is presented in 3.2. To elaborate on classification of inverse

problems section 3.3 is presented. Finally section 3.4 details the mathematics involved and the

methodology followed to solve the ISTP.

3.1 Inverse problems an introduction

Theoretical physics allows us to make predictions i.e., it gives description of the physical system

under consideration and it can predict the outcome (observations or measurements). Class of

problems which predict measurement are called the forward problem, the simulation problem

or the modelization problem. The inverse problem in contrary consists using measurements or

observations to infer values of parameters that characterize the physical phenomenon (system).

Inverse problems is encountered in almost all the branches of engineering; astrophysicists, statis-

ticians and mathematicians are among those who are interested in subject of inverse problems.

To cite and example for use of inverse problems, due to aerodynamic heating surface temperatures

for a atmospheric reentry vehicle is so high that temperature sensors are impossible to be planted

on it, instead sensors are placed beneath the surface where they can withstand the temperature,

and from measurements at this location, surface temperature of the vehicle is calculated (inverse

problem). For such problem inverse problems can also be used to estimate the thermophysical

properties at such high temperatures.

11

Chapter 3. Inverse problems 12

3.2 Inverse problems- well posed or ill posed

In order to recognize the difficulties associated with inverse problems, mathematically any inverse

problem belongs to a class of ill posed problem [24], whereas any forward model problem is well

posed problem. A well posed problem described by Hadamard [25] should satisfy the following:

1. The problem should have a unique solution;

2. The solution of the problem must exist;

3. For small perturbations in input data solution must be stable.

Analyzing the three conditions, 1) in case of a inverse problems unique solution only exists for

some special cases [26]. 2) Existence of solution for inverse problem may be assured by physical

reasoning. 3) Any inverse problem is very sensitive to errors in input data and mostly requires

special techniques in order to satisfy condition 3. Hence from this discussion it may be proved

that inverse problem is always ill posed in nature.

For decades it was reasoned that violating any of the conditions of well-posedness would mean

that problem is unsolvable and results obtained are meaningless. This belief caused decrease

in popularity of inverse problems among mathematicians, engineers and physicists. It was

Beck’s function estimation approach [26], Alifanov’s iterative regularization techniques [27] and

Tikhonov’s regularization procedure [24] that revitalized this interest. Hence for successful solu-

tion of any inverse problem it needs to be reformulated from a ill-posed problem to an approxi-

mated well-posed problem.

3.3 Inverse problems- types

In general inverse problems can be classified into two types parameter estimation inverse problem

and function estimation inverse problem. Parameter estimation problems as the name suggests

is associated with inverse calculations of limited number of parameters, that can be as small as

one, might be as large as half a dozen or occasionally could go higher. Whilst for a function

estimation problem, the number of parameters to be described as generally large, maybe hun-

dreds or thousands. Parameter estimation problems may or may not be ill posed but function

estimation problems are always ill posed in nature.

3.4 Inverse problem- solving inverse shock tube problem

Significance of inverse problems can be visualized in a better way by referring to the problem of

flow inside a shock tube. Physical, qualitative and mathematical behavior of this problem were

elaborated in sections 2.2, 2.4 and 2.5. Mathematically the 1D flow phenomena is formulated

by equations the continuity equation, the momentum equation and the energy equation given in

Chapter 3. Inverse problems 13

section 2.5 and the initial conditions:

for t = 0

(ρl, pl, ul), x < x0,

ρr, pr, ur), x > x0,
(3.1)

Numerical modeling (CFD) can be used in order to solve equations of mass, momentum and

energy simultaneously, for any parameter (ρ, p, u) at a given time t > 0 by using initial conditions

(3.1). Solution of this problem will be called as direct problem solution. Now consider solving

Figure 3.1: Experimental sensing in shock tubes

problem that is similar to above but initial conditions (ρr, pr, ur) at t = 0 are missing or not

known while other initial conditions (ρl, pl, ul) are known. This can be visualized by imagining

a gas in the working section of tube (refer to Figure 2.1) whose properties are unknown while

it went under pressurization. The problem in hand now requires to determine the unknowns

(ρr, pr, ur), in order to compensate the lack of information due to missing initial conditions

experimental measurements of p(xdata, t) or u(xdata, t) ≡ Y at a given points (data point) inside

the tube xdata and at time t are provided as inputs to the inverse problem. Figure 3.1 shows some

of the common techniques of extracting velocity or pressure in a shock tube. This now becomes

an inverse problem as it concerns solving the flow problem in reverse time to estimate the initial

conditions. The basic idea of this is explained in Figure 3.2. The reason why estimate was

in place of determination, is that experimental data contains errors as a result inverse analysis

will always recover estimated outputs not exact. The inverse problem can be mathematically

formulated by using the three equations, continuity, momentum and energy and

for t = 0
{

(ρl, pl, ul), x ≤ x0 (Initial condition), (3.2)

p(xdata, t) = (Experimental data) (3.3)

Inverse problem given above has missing initial conditions, hence is referred to as boundary value

inverse time problem. For the given set of missing values inverse problem consists in minimizing

the distance between the predictions and the related measurements. Also there may exists inverse

problems concerning other unknowns energy generation, thermophysical properties etc. ISTP

falls under parameter identification problem, p, ρ, u at initial time are treated as parameters.

In order to obtain solution for ISTP, iterative method as described by knight et al [9] is used:

Chapter 3. Inverse problems 14

Figure 3.2: Forward and inverse shock tube problem

it requires iterating the forward model until cost function is minimized. Cost function may be

defined as a function of model data (Ymo) and experimental data (Y) which when minimized

gives the solution to the inverse problem .

3.4.1 Cost function

The cost function also known as objective function is often expressed as norm of difference

between selected data from the forward model Ymo and experimental data at the same point Y .

Mathematically cost function is given as

J (Ymo) =‖ Y − Ymo ‖2X (3.4)

Chapter 3. Inverse problems 15

Here X specifies the choice of norm (L2, euclidean, etc.) and the function is squared in order

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.06 0.08 0.1 0.12 0.14 0.16

c
o
s
t

fu
n

c
ti
o
n

 j
(p

m
o
,

ψ
)

initial pressure pr

cost function

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.06 0.08 0.1 0.12 0.14 0.16

c
o
s
t
fu

n
c
ti
o

n
 j
(p

m
o
,u

m
o
,ψ

)

initial pressure pr

cost function

Figure 3.3: One parameter estimation (ψ = pr)
cost function Left- pressure based cost function
j(ψ) =‖ p − pmo ‖2 Right- pressure and veloc-
ity based cost function j(ψ) =‖ u − umo ‖2 + ‖

p− pmo ‖2

to remove any discontinuities present, typi-

cally one uses ‖u‖2x =
∑
i u

2
i . Although cost

function can be explicitly given in terms of

model data Ymo, but the minimization cost

function used in inverse problems is also a

function of parameter ψ (what we search for)

since Ymo = f(ψ), hence cost function to be

minimized (AKA reduced cost) is given as

j(ψ) = J (Ymo) (3.5)

In the case of ISTP, experimental data (Y) is

a pressure p or velocity u reading at the data

point. Exact Euler solver developed on an-

alytical solution theory mentioned in section

2.6 is used to obtain the pseudo-experimental

data Y . It needs to be mentioned that the in-

put to inverse problem, the experimental data,

always contains errors, as the exact solver is

analytical solution it is error free, but we need

to keep in mind the numerical error that ex-

ists due to computations in forward modeling

these errors are assumed to simulate the ex-

perimental errors. The model data Ymo is obtained by running the FVM forward model code

(Euler solver EULER AFZ). The fact to be mentioned is as CFD solution via the Euler solver

is always approximate this adds to the noise or error while solving the ISTP.

For this study using equation 3.4 following cost functions are used

j(ψ) =
1

2
‖ p− pmo ‖2 (3.6)

j(ψ) =
1

2
‖ u− umo ‖2 (3.7)

j(ψ) =
1

2
‖ u− umo ‖2 + ‖ p− pmo ‖2 (3.8)

As parameter estimation inverse time problem of recovering initial conditions pr, ρr, ur is the

topic of this study, It can be sub divided into two or one parameter identification problem of

pr, ρr. Note the choice to exclude ur from the identification parameter comes from the fact that

at t = 0 , u is always zero. hence we can have three cases of parameter identification

• parameter identification of pr here ψ =
(
pr

)
• parameter identification of ρr here ψ =

(
ρr

)
• parameter identification of pr and ρr here ψ = (pr ρr)

T

Chapter 3. Inverse problems 16

Figure 3.4: Two parameter estimation (ψ =
(
pr
)
) cost function Top- pressure based cost

function j(ψ) =‖ p − pmo ‖2 Bottom- pressure and velocity based cost function j(ψ) =‖
u− umo ‖2 + ‖ p− pmo ‖2

In order to check the convexity of cost functions, some plots of cost functions have been presented

in Figures 3.3 and 3.4, these depict cost function for one parameter identification and two

parameter identification respectively. Figure 3.4 shows approximately convex cost function and

a non linear cost function being developed using different cost function formula.

3.4.2 Method to solve the inverse shock tube problem

Iterative algorithm as used by King et al [9] has been used to solve the parameter identification

inverse problem. Steps involved to solve a two parameter problem (pr, ρr) have been explained

below and the algorithm of which is given in appendix A.8

• Start by guessing the values of parameters to be estimated ψ = ψ0
i here i = 1, 2,,m , m

is total number of parameters in case of ISTP i = 2.

Chapter 3. Inverse problems 17

• Use these guess parameters as inputs to forward model solution via Euler solver. In case

of ISTP initialize the forward model with guess values of (pr, ρr).

• Obtain the cost function j by using the forward model result (Ymo) at experimental mea-

surements at the data point (Y). In the case of ISTP Ymo is given by running the Euler

solver (EULER AFZ) for guessed parameters (pr, ρr) and experimental results (Y) are

simulated by analytical solver (EULER EAFZ).

• Check if the cost function has reached the desired minimum value i.e. is the stopping

criteria is met, based on this either stop or continue the iteration. In order to continue

the iterations optimization technique is used to improve upon the next guess parameter ψ

values.

In general the iterative algorithm is computationally very expensive so there exists a need to

apply optimization so that the minima of the cost function can be obtained in less number of

iterations.

3.4.3 Stopping criteria

Generally convergence of iterative algorithms is non finite, hence the need of stopping criteria.

Different iterative schemes demand different stopping criteria for optimal performance of the

algorithm. Following are some of the stopping criteria used for cost function minimization

‖ 5 j(ψk)‖2 ≤ ε; (3.9)

‖ 5 j(ψk)‖∞ ≤ ε; (3.10)

|j(ψk)− j(ψk−1)| ≤ ε; (3.11)

j(ψk)− j(ψk−1) ≤ ε; (3.12)

j(ψk) ≤ ε; (3.13)

Here k is the iteration number and ψk is parameter at iteration k. The last choice 3.13 is most

commonly used in inverse problem i.e. when cost function reaches a desired minimum iterations

should stop [27].

In the next chapter In section 3.4.2 of this chapter need of optimization was emphasized

in order to reduce the computational expense of solving the inverse problem. Next chapter

highlights, formulates the use of optimization in inverse problems. Theory and mathematics of

some optimization techniques that are relevant to ISTP has been developed in the chapter to

follow.

Chapter 4

Optimization

Outline

The fact that optimization is one of the important ingredient for a well solved inverse problem,

this chapter introduces some of the optimization algorithms that have been used with ISTP.

Section 4.1 introduces optimization in general, to follow sections 4.2 and 4.3 present typical

classification of optimization methods. To detail on the algorithms compatible with ISTP a few

applicable optimization methods have been reviewed in sections 4.4, 4.5, 4.6, 4.7, and 4.8.

4.1 Optimization- Introduction

Optimization or mathematical programming is a widely used mathematical tool that assists in

selection of best element, for some given criteria, among a set of elements. Optimization is

popular in mathematics, statistics, operational research, computer science and other engineering

fields. An elementary case optimization problem may consist of minimizing of maximizing a

function f(x) by systemic choice of inputs from within the allowed set of inputs or parameters.

Optimization in inverse problem includes search of best available value of the cost function in a

constrained domain. Mathematically function optimization problem can be given as

f(x)→ R ∀ x = [x1, x2, x3,]
T , ∃ R

From the vector x = [x1, x2, x3,]
T it is required to find element x such that

minimization problem: f(x) ≤ f(x) ∀ x1, x2, x3,

maximization problem: f(x) ≥ f(x) ∀ x1, x2, x3,

In ISTP, as the goal demands to find parameters (ψ) that amount to minimum cost function

(j(ψ)), this problem can be categorized under function minimization optimization problem. For

a cost function to be minimum, optimality conditions needs to be satisfied. In search for the

18

Chapter 4. Optimization 19

desired parameter ψ that gives the minimum of cost function j(ψ) optimality condition demands

the following [28]

1. In the function plane (f(ψ), ψ), ψ is a stationary point, i.e. 5j(ψ) = 0

2. The second derivative of cost function (AKA Hessian) 52(ψ) = (∂2(ψ)/∂ψi∂ψj) is positive

definite i.e. ∀y ∈ R, y 6= 0, (52j(Ymo)y, y) > 0

These two conditions need to be satisfied for a function to be minimum globally or locally. For

more in depth knowledge on optimization some well known books and articles [29–32] can be

referred.

In general n-dimensional function optimization can be classified into two types

• Zero order n-dimensional optimization

• Gradient type optimization

Note that there are vast number of algorithms that are based on either of the two optimization

techniques but among these explanation of only few will be made (ones used with ISTP).

4.2 Zero order n-dimensional optimization

Zero order n-dimensional optimization AKA Derivative free optimization (DFO), computes the

minimum of a cost function j(ψ) without looking for its gradient 5j(ψ). Such methods are most

commonly used when there is presence of local minima withing the function. The method can

also be used at times when the gradient 5j(ψ) is not available or very difficult to calculate.

In the recent past there has been an increase in development of computational tools solving

optimization problems based of DFO methods [33]. Among the many available DFO methods,

Simplex method and Particle Swarm Optimization (PSO) are used in solving the ISTP.

4.3 Gradient type n-dimensional optimization methods

These are the most widely used methods to find minimum in case of a convex cost function. This

method utilizes the gradient wise descent approach to find (ψ). In order to search for stationary

point ψ, following iterative procedure is adapted

• start by guessing a random value ψ0.

• At each iteration k, the next better guess value ψk+1 is formulated as ψk+1 = ψk + αkdk

were dk is displacement direction and αk step size. This displacement direction dk depends

on the choice of descend direction, but always it remains a function of gradient Oj(ψk)n.

Many algorithms BFGS, Levenberg Marquardt, DFP, steepest descent, conjugate gradient, etc.

use the Gradient type n-dimensional optimization principle to solve the cost function minimiza-

tion problem. Among these steepest descent and conjugate gradient method are used in ISTP.

Chapter 4. Optimization 20

4.4 Gauss-Newton optimization

This matrix based algorithm is classified under Gradient type n-dimensional optimization. The

method is widely used to solve the least square problems, in case of ISTP the cost function

j = 1
2 (Y − Ymo)2 makes it an interesting case to solve via Gauss-Newton (GN) Algorithm. This

method possess advantage that the hessian is not to be calculated. The algorithm is efficient for

cases involving less parameters, in terms of a ISTP as two parameters (ψ1, ψ2) are to be searched

for GN forms a reasonable choice for the choice of optimizer.

Gauss-Newton approach is an iterative approach, were it improves the initial guess parameters

with each iteration k in order to find the optimal parameter vector ψ that minimizes the cost j(ψ).

The algorithm of this method is given in appendix B.1. The improved guess parameters after

each iteration are given as a function of sensitivity matrix S and error vector E. Mathematically

ψk+1 = ψk + dψ (4.1)

dψ = f(S,E) (4.2)

dψ = −[STS]−1STE (4.3)

As it can be inferred from equations 4.3 that working of algorithm depends on inversion [STS]

matrix, hence forth dependent on sensitivity matrix S. To get more insight how the sensitivity

matrix and error vector are formulated appendix B.1 can be referred to.

4.5 Simplex or Nedler-Mead optimization

Listed in the top 10 algorithm of 20th century by journal or Computing in Science and Engi-

neering, Simplex method AKA Nedler-Mead (NM) method, is one of the most popularly used

Figure 4.1: clockwise from top left ; Reflection,
extension, contraction and inside contraction

gradient free (Zero order n-dimensional) opti-

mization method for function based optimiza-

tion. The method is simple to understand and

code. The method can be well understood by

the classic paper of Nedler and Mead [34] who

devised this method.

A simplex (χ0) is defined as structure formed

by n + 1 points, with n being total num-

ber of parameters (n = dim(ψ)). A simplex

(χ0) is defined in the parameter plane with

each point represented by a guessed parame-

ter vector ψ0
i and having a costs (j(ψ0

i)) with

i = 1, 2, 3, .., n + 1. NM method being an it-

erative procedure, generates new simplex at

each iteration that is closer to the minimum eliminating the points (ψi) with worse costs (j(ψi)).

Chapter 4. Optimization 21

The in hand ISTP concerns finding out two parameters hence dim ψ = 2 this means the simplex

generated contains (2+1 = 3) points, or in other words simplex here is triangle. Hence a triangle

is generated at each iteration which gets closer and closer to minimum iteration after iteration.

The strategy for forming better simplex in case of ISTP (dim ψ = 2), starts by sorting out the

vertices of triangles according to one with best cost to the worst, hence

j(ψu) < j(ψv) < j(ψw) (4.4)

with ψu being the best point and ψw the worst one.

This is followed by improvement in simplex via reflection, extension or contraction, the method-

ology of which is explained below

1. Reflection consists of reflecting the worst point ψw to ψR perpendicular to the segment

ψuψv. Depending on the cost j(ψR) in comparison to ψm, (ψm is mid point of ψuψv) the

parametric space may either be extended or contracted.

2. Extension for condition j(ψR) < j(ψm) being satisfied the parametric space is extended

to ψE . After establishing the point ψE , if j(ψE) < j(ψR) new point ψE is accepted and

ψR is rejected and the new point replaces ψw.

3. Contraction if extension is not an option i.e. j(ψR) > j(ψm), parametric domain is con-

tracted to point ψC and following the condition if j(ψC) < j(ψR), ψw is replaced by ψC

else the whole simplex is contracted.

Above mentioned strategy can be well understood by going trough the Figure 4.1. The Algorithm

used for ISTP is mentioned in details in appendix B.2.

4.6 Particle swarm optimization

Particle swarm optimization, like simplex also belongs to gradient free optimization. It is a

genetic algorithm that was devised by Kennedy and Eberhart in 1955 [35]. It involves particles

being initiated in the parameter space (ψ), and these particles move in search of minimum cost

function j(ψ), the particles here mimic the movement of group of birds (swarm) in search of food

(minimum cost).

Initially particles (value of ψ in parameter space) are randomly placed in the parameter space.

Each particle is mobile and can move with a certain velocity V pk . At each successive iterations

particles change its position (xpk = ψp), moving with velocity V pk . The particle velocity V pk is

function of best location of any particle in swarm G.bestk (global-best) and its own best location

in the past iteration p.best (particle-best). Mathematically velocity at an iteration k is given by

V pk = ωV pk−1 + C1R1(p.bestk − xpk) + C2R2(G.bestk − xpk) (4.5)

The values of ω = .7 and C1 = C2 = 1.46 [36] and R1 & R2 are random variables that follow

uniform distribution in [0,1]. Updating the velocity of the particle by equation 4.5, particle

Chapter 4. Optimization 22

position is updated as

xpk = xpk−1 + V pk (4.6)

Qualitatively the above two equations influence the particle movement by

• how much particle trusts its experience (p.best) now and in the past,

• how much particle trusts its neighborhoods experience (G.best).

This phenomena is well detailed in Figure 4.2. Usually the size of swarm is 20 to 30 particles [36],

Figure 4.2: PSO : Particle movement to new loca-
tion

but for some problems it may go upto 100.

The stopping criterion for this method is gen-

erally the maximum number of iterations or a

critical cost function (j(ψ)) value [28]. The al-

gorithm works quite well with non linear func-

tions, and to identify local minma in the func-

tion, but it comes with a disadvantage of be-

ing computationally expensive as at each iter-

ation the forward model is run several number

of times (depending on swarm size).

The algorithm developed for ISTP case is

given in appendix B.3. The algorithm is well suited for ISTP as the cost function contains

presence of local minima this can be observed in Figure 3.4.

4.7 Steepest gradient optimization

Steepest gradient (SG) method is simplest of all methods classified under Gradient type opti-

mization method. This algorithm makes use of gradient (Oj(ψ)) at each iteration in order to

descent to the minima (ψ). At every iteration k, gradient Oj(ψ) gives largest descent in in-

crease of cost j(ψ). The new point according to the algorithm depends on step size (αk) and is

mathematically given as

ψk+1 = ψk − α Oj(ψk)

‖Oj(ψk)‖
(4.7)

As the name suggests here the step size α is predefined and generally chosen as function of

iteration α = α(k). The iterations converge to minima ψ provided

α→ 0 as p→∞

For the ISTP the value of α chosen to satisfy the above criteria is given by α = 1/k. The

algorithm of the method used with ISTP is given in appendix B.4. The method is simple to

understand and code but has its main drawback of slow convergence rate compared to other

gradient based optimizers.

Chapter 4. Optimization 23

4.8 Conjugate gradient optimization

Developed by Magnus Hestenes and Eduard Stiefel in 1952 [37], this method is one of the most

popular and efficient methods among gradient based optimization methods. The method has

two variants, one applicable to quadratic functions minimization and the other for any arbitrary

function minimization. In ISTP the latter one is used, the algorithm of which is given in appendix

B.5. This method is most popularly used to minimize linear set of equations (matrix systems)

but it should be noted that this method is equally efficient for the case of function minimization

also.

The algorithm starts by guessing parameters ψ0 and iteratively converging this guess into mini-

mum ψ. At the beginning of iterations the direction d0 is given by the negative gradient −Oj(ψ0).

In CG the step size is given as a function of forward model data (α = f(Ymo, Y
′
mo)), thus a opti-

mal choice of step size unlike SG algorithm. In CG the direction of descent depends on gradient

as well as on previous descent direction, again an optimal choice for the descent direction as well.

Mathematically step size α and direction of descent are given as

α = −〈Y
′
mo, Y

−
mo − Ymo〉

〈Y ′mo, Y ′mo〉
(4.8)

dk = −Oj(ψk−1) + βdk−1 (4.9)

with k being the iteration number and β is given by

β =
〈Oj(ψk),Oj(ψk)〉

〈Oj(ψk−1),Oj(ψk−1)〉

here 〈a, b〉 =
∑
i aibi From the above equations the next better guess is given by

ψk = ψk−1 + αdk (4.10)

Mathematics involved behind the equations can be well understood by referring [28]. The method

proves advantageous as it converges very fast (for a quadratic function converges in two iterations)

saving computations expenses but the method does not work well for a function that contains

local minma.

In the next chapter: In previous chapters mathematics, theory and methodology of inverse

problems has been discussed in details. Shock tube problem mathematics, theory and forward

modeling has also been developed in the previous chapters. In order to present its application

and performance, results and discussions on use of inverse problems with the shock tube problem

(ISTP) is presented in the next chapter.

Chapter 5

Results, Discussions and

Conclusions

Outline

Application results of inverse problems with shock tube has been presented in this chapter. To

quantify the problem section 5.1 has been presented, data used in ISTP is mentioned in this

section. Results concerning some pre-preparations before solving the actual ISTP have been

presented in section 5.2. In order to begin with inverse problems first a simpler ISTP concerning

one parameter identification was solved results of which are presented in section 5.3. Results

and analysis concerning the main ISTP have been detailed in section 5.4, the section also details

how different optimization algorithms work with ISTP. Two new hybrid optimization algorithms

that are tailored for ISTP these are presented in section 5.6.

5.1 Problem Data

In this project a shock tube problem of non sonic refraction (normal shock does not reach the

ends of the tube) is considered, this is the classic problem of Sod [22]. For the forward problem

the following initial conditions existρl = 1.0 pl = 1.0, ul = 0.0, ∀ x < x0,

ρr = 0.125, pr = 0.1, ur = 0.0, ∀ x > x0,
(5.1)

Note that the primitive variables (p, ρ, u) have non dimensional values [0,1]. The length of the

shock tube runs from x = −5.0 to the left to x = +5.0 to right, with a total length of l = 10.0.

The diaphragm stands at x = x0 = 0.0.

The pseudo-experimental calculations (The exact solution in this case) have been taken at time

t = 1.7, before the shock reaches the ends. The diaphragm is assumed to rupture at time

24

Chapter 5. Results and discussions 25

t = 0.0. The data point at which the sensors are located, to derive the pressure and velocity, is

at x = 0.5, the reason to chose this point is given in section 5.2 (sensitivity analysis). At this

point the pseudo-experimental values at t = 1.7 are

px=.5 = Y1 = 0.3129 ux=.5 = Y2 = 0.9048 (5.2)

For our case of ISTP, parameter estimation problem is considered i.e., the goal is to recover

the initial conditions (pr, ρr at t = 0) for the shock tube under consideration. As the initial

conditions on the right side of the tube are already given in equation 5.1, this data will serve as

validation for inverse modeling.

Note that all the results to follow have been developed using code INVERSE ISTP, flow chart

explaining the code is mentioned in appendix A.8.

5.2 Some prerequisite results

Concerning the forward model

Inverse problems are always ill posed as was emphasized in section 3.2. Due to such nature of

inverse problems the errors in forward modeling should be minimal. In order to achieve so, the

following has been adapted in the forward model code.

Grid convergence: A uniform grid with 1000 grid cells is chosen, the reason for such high

number of cells lies in the fact that it allows to capture the discontinuities better. The choice is

justified by referring to Figure 5.1. As it can be noticed that 4000 cells would have been a better

option to capture the shock properly but the fact that it will computationally be very expensive,

1000 cells is preferred over it. Hence for ISTP 1000 celled grid is chosen.

10
-5

10
-4

10
-3

10
-2

10
-1

 500 1000 2000 3000 4000

re
s
id

u
la

 P
re

s
s
u

re
 p

re
s
i

Grid cells

Pressure residue

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1.5 2 2.5 3 3.5 4

P
re

s
s
u

re
 p

Location x

50 cells
100 cells
500 cells

1000 cells
2000 cells
4000 cells

Figure 5.1: Grid convergence performed on forward model: Left) Residue pressure in com-
parison to experimental results at x = 3; Right) Different grid behavior at the normal shock

at t = 1.7 sec

Courant number: The choice of courant number also effects the error in the forward model,

optimal courant number between [0,1] should be chosen to give the minimal error. The courant

number 0.95 is chosen for ISTP , this is purely based on literature survey and the choice

can be validated by referring [38].

Chapter 5. Results and discussions 26

Concerning the Inverse model

Sensitivity analysis: In order to establish the data point, location at which the sensor is to be

placed, the sensitivity of the output solution was checked varying the inlet parameters (pr, ρr).

It was established that are area between the right end of expansion fan and the normal shock

(quasi-steady region) i.e sections (2) and (1) (refer Figure 2.1) form the best choice for placing

the sensor. The reason being that this area is very much reactive to any perturbation in inlet

parameters (pr, ρr) and approximately there exists a linear relation between the output solution

and the inlet parameters. A through investigation reveled that point x=0.5 forms the

best choice for sensor locations. Figure 5.2 shows the linear plots that exist between the

inlet (pr, ρr at t = 0) and the output parameters (p, u at t > 0). The fact that also validates

the location being optimal for the sensor is that cost function obtained at this point is nearly

convex this can be noticed in Figure 3.4. It can be noticed from the Figure 5.2 that not all the

plots show a linear trend, but that outputs have a monotonous trends with respect to input.

Note that for the case of output pressure variation with initial pressure, output pressure varies

linearly with initial pressure hence the cost function will be perfectly convex for this case.

Sensor choice: Out of the available pressure, velocity and temperature sensors for providing the

experimental results, temperature sensors were excluded and only pressure and velocity

sensors were used for ISTP . The reason behind can be realized by referring to Figure C.2,

it can be noticed that density possess a discontinuity at the contact discontinuity, this would in

turn mean temperature being discontinuous around the region. Hence the sensitive region which

was explained above would shrink so temperature sensing is avoided.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o
u

tp
u

t
p

re
s
s
u

re
 p

Initial Pressure pr

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o
u

tp
u

t
p

re
s
s
u

re
 p

Initial Density ρr

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o
u

tp
u

t
v
e

lo
c
it
y
 u

Initial Pressure pr

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o
u

tp
u

t
v
e

lo
c
it
y
 u

Initial Density ρr

Figure 5.2: Sensitivity analysis between inlet (pr, ρr at t = 0) and the output parameters
(p, u at t > 0)

Chapter 5. Results and discussions 27

5.3 One parameter estimation problem

For the sake of getting numbers on how inverse problems perform with one parameter identifi-

cation, tests were run on, identifying initial pressure pr assuming initial density ρr known and

identifying initial density ρr assuming the initial pressure pr to be known. Note, no optimization

method was used as the problem is not computationally expensive. As the parameter to be

retrieved is in non dimensional form hence (ψ < 1). ψ = 1.0 forms the starting guess (ψ0) for

each case, with each iteration the value is decreased by a small perturbation ε. At each iteration

the slope of cost function (dj/dψ) is calculated, the value of ψ for which the slope changes its

sign is the required ψ. The two cases for the one parameter identification problem are,

• case 1: Identifying pr here ψ = pr and ρr = 0.125 (given)

• case2: Identifying ρr here ψ = ρr and pr = 0.1 (given)

As it has already been discussed in section 5.1, for the forward problem the initial conditions

are given by ψ1 = pr = .1 and ψ2 = ρr = .125, based on this data the error in the parameters

estimated from inverse problems is given in Tables 5.1 and 5.2.

Table 5.1: case 1: one parameter analysis: Pressure

Cost Function Initial Pressure ψ1 = pr Error %
j(ψ) = 1

2 (pmo − px=0.5)2 0.11122 11.22
j(ψ) = 1

2 (umo − Ux=0.5)2 0.11128 11.28
j(ψ) = 1

2 (pmo − px=0.5)2 + 1
2 (umo − Ux=0.5)2 0.11127 11.27

Table 5.2: case 2: one parameter analysis: Density

Cost Function Initial Density ψ2 = ρr Error %
j(ψ) = 1

2 (pmo − px=0.5)2 0.14011 12.087
j(ψ) = 1

2 (umo − Ux=0.5)2 0.14018 12.1439
j(ψ) = 1

2 (pmo − px=0.5)2 + 1
2 (umo − Ux=0.5)2 0.14017 12.1359

It can be noticed from the tables that error in the output solution, for the three chosen

cost functions remains approximately same i.e. 11 % for pressure calculation and

12 % for density . However for the sake of judging pressure based cost functions perform

slightly better, hence it can be a wise choice to install a pressure sensor in the working

section for inverse problem measurements.

5.4 Two parameter estimation problem

The problem of two parameter estimation involves having no a priori knowledge of gas in the

working section at the initial time t = 0. Mathematically the problem concerns identification of

two parameters (
pr

ρr

)
=

(
ψ1

ψ2

)
(5.3)

Chapter 5. Results and discussions 28

The solution of the problem was obtained using five different optimization algorithms, the details

of which were mentioned in chapter 4:

1. Gauss-Newton algorithm

2. Simplex algorithm

3. PSO algorithm

4. Steepest gradient algorithm

5. Conjugate gradient algorithm

The reason for the choice and order of these methods is as follows

• Gauss-Newtons (GN): This is one of the basic optimization technique used with inverse

methods. This matrix based method works very well for convex functions. The method

is also the simplest of all the matrix based optimizers, hence a positive result from this

method would implicate use of other matrix based optimizers while vice versa is true for

negative result.

• Simplex (NM) and PSO: These are zero order methods, not requiring to find the cost

derivative (gradient) making them easy to implement and code. Also the methods would

converge in any case, with or without convex cost function.

• Steepest Gradient (SG) and CG: These methods are 1st order gradient type methods. Not

needing any matrix operations these methods are equally fast and reliable for convex cost

functions.

It should be noted that for all the algorithms pressure based cost function was used, choice of

such cost function was influenced by the fact that pressure based cost functions would perform

well in comparison to other cost functions, this was noticed in section 5.2. Following are the

results that were obtained for two parameter analysis

5.4.1 Gauss-Newtons algorithm

The matrix based algorithm failed to produce any results. As discussed in the section 4.4,

the algorithm involves the inversion of matrix [STS], it was established that the matrix was ill

conditioned. Results for the 1st iteration (the only iteration after which the algorithm crashes)

shows

for iteration k = 1, with starting guess ψ0
1 = 0.5 ψ0

2 = 0.5

S =

(
.88 .672

−2.04 −1.552

)
[STS] =

(
4.9360 3.7574

3.7574 2.8603

)

The iteration ended up giving the following

ψk+1 =

(
−3.3562

4.3969

)

Chapter 5. Results and discussions 29

The result explains the reason why the algorithm crashed, as it can be noticed that obtained

pressure ψ1 is negative, which is not possible practically. This negative pressure when used with

the forward model crashes the code. Mathematical analysis reveals that the condition number

of [STS] is 1522.7, which is too high. For this method to perform condition number should be

close to 1.0. A conclusion can be made that due to correlation existing between ψ1 and ψ2, GN

algorithm failed.

Although the result of the algorithm ended up in failure, but it eliminated the use of

all other algorithms that involve matrix operation hence proving fruitful result.

5.4.2 Nedler-Mead algorithm (Simplex Method)

The gradient free algorithm performed well, acquiring convergence (notion of how fast algorithm

outputs ψ) in 10-20 iterations. As was discussed in section 4.5, the algorithm involves augmen-

tation of simplex χ(triangle in this case) till stopping criteria is met. This phenomenon can

been noticed in Figures 5.3 and 5.4. These Figures also explains how the algorithm reaches

convergence by shrinking the huge simplex to a smaller ones.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 1
Iter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 1
Iter 5

Iter 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 1
Iter 5

Iter 11
Iter 16

Figure 5.3: simplex Algorithm for change χ0: From top left clockwise; at 1st iteration , 5th

iterations, 11th iterations and 16th iteration.

In order to chose the initial simplex χ0 (triangle), the three vertexes are chosen wide away

from each other, so that maximal area in parameter space (ψ) can be covered. Concerning the

stopping criteria, the iterations are stopped when the triangle (simplex χ) is minimized to almost

a point, i.e all three vertices almost coincide. This is noticed in Figures 5.3 and 5.4 by observing

the last iteration of the figures, notice that all three vertices almost overlap.

Chapter 5. Results and discussions 30

It should be noted that the results presented in this section are for a specified cases were three

initial coordinates of the triangle (χ0) i.e. the three guessed values in parameter space are

case I (Figure 5.3): ψ0
1 =

(
.2

.9

)
, ψ0

2 =

(
.6

.1

)
, ψ0

1 =

(
.5

.85

)

case II (Figure 5.4): ψ0
1 =

(
.6

.1

)
, ψ0

2 =

(
.12

.17

)
, ψ0

1 =

(
.9

.9

)

By running these different tests on this algorithm it is established that changing the initial

guess values may lead to change in convergence of the algorithm, it may also result

in some minor changes in the output parameters. To emphasize on this a test runs with

different initial simple χ0 are shown in Figure 5.4 and 5.3. However in general this algorithm

produces stable results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 01

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 01
Iter 05

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 01
Iter 05
Iter 09

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 01
Iter 05
Iter 09
Iter 11

Figure 5.4: simplex Algorithm: From top left clockwise; at 1st iteration , 5th iterations, 7th

iterations and 11th iteration.

To sum up the algorithm table 5.3 is presented

Table 5.3: Simplex algorithm results

Iteration Initial Pressure
ψ1 = pr

Initial Density
ψ2 = ρr

Error in ψ1 Error in ψ2

Case I 16 0.118 0.131 18.1 % 4.8 %
Case II 11 0.112 0.122 12.8 % 2.8 %

Chapter 5. Results and discussions 31

5.4.3 PSO algorithm

The gradient free algorithm performed extremely well in the case of ISTP; very low errors

in density and pressure were observed , owing to the fact that the cost function is not

perfectly convex and that this algorithm is specially tailored for non convex type cost functions.

However the algorithm was computationally expensive, taking up high CPU time in

comparison to other algorithms. As explained in section 4.6 the algorithm involves initiating

some particles and altering their position till every particle is in close vicinity of a single point,

two cases were analyzed, one with 10 particles (Figure 5.6) and one with 20 particles (Figure

5.5). Table 5.4 below sums up the result from the two cases

Table 5.4: Particle swarm algorithm

Particles Iteration Initial Pressure
ψ1 = pr

Initial Density
ψ2 = ρr

Error in ψ1 Error in ψ2

10 170 .10631 .13151 6.31 % 4.8 %
20 46 .10633 .13021 6.33 % 4.16 %

To explain visually how these case acquired convergence Figure 5.5 and Figure 5.6 are presented.

It can be noticed that with each iteration particles move towards the minimum ψ at (0.1,0.125),

represented by a black circle. Notice that in the last iteration, i.e. when the algorithm converged,

each particle is inside the minima circle, giving unanimous value of ψ and this ψ is nothing but

the required ψ.

The tests were conducted by running the algorithm start and again, it was revealed that results

remained the same always making PSO a stable algorithm for the case of ISTP. CPU

time taken by 20 particles was comparatively lower than the 10 particle one making

it a better choice.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 01

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 37

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 46

Figure 5.5: Particle swarm optimization with 20 particles: from top left 1, 10, 20, 30, 37 and
46th iteration

Chapter 5. Results and discussions 32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 030

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 060

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 090

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
In

it
ia

l
D

e
n

s
it
y
 ρ

r
Initial Pressure pr

Iter 120

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Iter 170

Figure 5.6: Particle swarm optimization with 10 particles: from top left 1,30,60,90,120 and
170th iteration

5.4.4 Steepest gradient method

The gradient based method proved efficient for the case of ISTP; producing satisfying

results with very less number of iterations. For most of the cases with different initial guess

ψ0, the algorithm converged in 4-15 iterations. Some of the results are presented in Figure 5.7.

Owing to the fact that cost function was not perfectly convex, it can be noticed the algorithm

is not stable . It can be noticed that all three different tests presented follow different

path towards the minimum . Also note, the fact that not only the algorithm is not stable

but also test 3 did not output satisfactory results. It was also established that the algorithm

produced different results (ψ) with different initial guess values (ψ0), but in most

of the cases the output remained in the vicinity of the desired result . It has to be

emphasized that the algorithm should be run many times in order to get the correct

value of ψ.

Table 5.5 summarizes the three test results that were performed using steepest gradient algorithm

with three different initial guess values. Note that all of them result in different values of ψ, test

1 being the best case with test 3 the worst.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Exact

Test1

Test2

Test3

Test 1
Test 2
Test 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

Test 1
Test 2
Test 3
Exact

Figure 5.7: Convergence in SG and CG algorithms: Left- three tests for SG algorithm; Right-
three tests for CG algorithm

Chapter 5. Results and discussions 33

Table 5.5: Steepest Gradient algorithm results

Iteration Initial guess ψ0 Minimum ψ Error in ψ1(pr) Error in ψ2(ρr)
Test 1 4 [0.55 0.6]T [0.085 0.134]T 15.0 % 7.2 %
Test 2 5 [0.30 0.9]T [0.119 0.110]T 19.0 % 12.2 %
Test 3 5 [0.8 0.4]T [0.145 0.089]T 45.6 % 28.8 %

5.4.5 Conjugate Gradient Method

As CG method also falls under class of gradient type optimizer, the method showed similar

characteristics to steepest gradient method, only that the number of iterations to converge

were less than that of steepest gradient method. This algorithm also lacked stabil-

ity, producing different results (ψ) with different initial values(ψ0). To improve the

algorithm ψ was constrained within the available limits [0,1]. Although for certain initial guess

values of ψ0 the algorithm converged in 2 iteration, but in general the algorithm converged in

2-10 iterations, some of the results are given in Table 5.6 and visualized in Figure 5.7.

Table 5.6: Conjugate Gradient algorithm results

Iteration Initial guess ψ0 Minimum ψ Error in ψ1(pr) Error in ψ2(ρr)
Test 1 2 [0.5 0.5]T [0.109 0.129]T 9.9 % 3.2 %
Test 2 3 [0.9 0.1]T [0.153 0.089]T 53.3 % 28.8 %
Test 3 4 [0.6 0.9]T [0.110 0.133]T 10.1 % 6.4 %

5.5 Summary of two parameter estimation

To summarize all the results that have been presented in section 5.4, Table 5.7 has been presented

 0.11

 0.115

 0.12

 0.125

 0.13

 0.135

 0.1 0.11 0.12 0.13

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

CG

SG

PSO

NM
Exact

Figure 5.8: Visual Summary of two parameter
analysis

and to visualize the comparison of how differ-

ent algorithms perform for the two parame-

ter estimation ISTP, Figure 5.8 is presented.

Each point on Figure 5.8 represents averaged

output of three test runs in each algorithm.

This sums up the discussion GN being the

worst algorithm for the ISTP and PSO

being the best choice , although it comes

with a high computational cost. To be eco-

nomical computationally and equally also pro-

duce good result simplex method (Nedler-

Mead method) is not that bad of a choice.

Gradient type methods form a good

choice but care needs to be taken if the acquired ψ is ψ the algorithm needs to

be run over and again .

To provide the rating of how the alogrithms performed Table 5.7 has been presented. As it

can be noticed from the Table 5.7 that, PSO does not perform well on iteration count and

Chapter 5. Results and discussions 34

computational time, while in on counter CG only performs well in these two areas. It would be a

wise option to combine these two algorithms. In light of this two hybrid algorithms are tailored

in order to solve the ISTP more efficiently.

• PSO1CG2 (first PSO then CG)

• PSO2CG1 (first CG then PSO)

Table 5.7: Rating of different algorithms for ISTP

GN NM PSO SG CG

iterations

Error

Stability

CPU time

5.6 Hyprib algorithm

As mentioned above this kind of algorithm combines the advantages of zero order and first order

optimizers for ISTP.

5.6.1 PSO1CG2

The algorithm involves running the PSO algorithm first followed by CG algorithm. Here PSO

algorithm is run for a particular number of iterations (iteration when the swarm is confined

in a close vicinity). At the stopping PSO iteration from the location of all swarm particles ψi

an average location is deduced ψavgPSO. This new location serves as initial guess for the CG

algorithm ψ0 = ψavgPSO. The fact that at the stopping iteration for PSO, the swarm particles

are in close vicinity suggests that particles are in an area that will be convex like. Any guess value

in this convex like area should form a descent guess for CG method, this forms the motivation

for the algorithm PSO1CG2.

A test of PSO1CG2, a case run with 20 particles for PSO is presented in this section. Figure 5.9

presents the initial iteration, the stopping iteration and the average ψ value for PSO. Further

CG algorithm run using ψavgPSO as initial value. The results of this algorithm is illustrated in

Table 5.8.

Table 5.8: Hybrid optimizer PSO1CG2

Iteration (PSO+CG) Initial Pressure
ψ1 = pr

Initial Density
ψ2 = ρr

Error in ψ1 Error in ψ2

24+7=31 .1063 .138 6.3 % 10.4 %

It can be concluded that the algorithm performs much better than the two algorithms

individually . As seen in section 5.4.3 PSO algorithm with 20 particles ran alone, converged

in 46 iterations but with PSO1CG2 PSO needs to be run only 24 times saving 22 iterations

Chapter 5. Results and discussions 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
ti
y
 ρ

r

Initial Pressure pr

iter 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
ti
y
 ρ

r

Initial Pressure pr

iter 24

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
it
ia

l
D

e
n

s
ti
y
 ρ

r

Initial Pressure pr

Mean value
iter 24

Figure 5.9: Hybrid optimizer PSO1CG2 showing initial guess, stopping guess and derived
mean value

while producing almost the same results. It should also be noted that in actual (22× 20 = 440)

iterations in forward model are saved owing to the fact that each particle needs running

of forward model once. But also it should be noted that conjugate gradient method did not

converge in 2 iterations as it was expected to, this suggests that cost function is non convex even

from the new starting guess ψavgPSO. For different tests run the algorithm in general was

not fully stable.

5.6.2 PSO2CG1

As mention above the cost function remains non convex even in the vicinity of the required ψ,

PSO2CG1 algorithm forms a good option in order to find the minimum. PSO2CG1 involves

running the CG algorithm first followed by the PSO algorithm. CG algorithm outputs its

minimum ψminCG, keeping this minimum at the center a small boxed shaped local parameter

space is established around it. In this local parameter space PSO algorithm is applied.

 0.125

 0.13

 0.135

 0.14

 0.145

 0.15

 0.155

 0.16

 0.165

 0.09 0.1 0.11 0.12 0.13 0.14

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

iter 1

 0.125

 0.13

 0.135

 0.14

 0.145

 0.15

 0.155

 0.16

 0.165

 0.09 0.1 0.11 0.12 0.13 0.14

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

iter 4

 0.125

 0.13

 0.135

 0.14

 0.145

 0.15

 0.155

 0.16

 0.165

 0.09 0.1 0.11 0.12 0.13 0.14

In
it
ia

l
D

e
n

s
it
y
 ρ

r

Initial Pressure pr

iter 7

Figure 5.10: Hybrid optimizer PSO2CG1: particles initialized in local parameter space and
converging in 7 iterations; From left- 1,4 and 7thiteration

A test case of 10 particle PSO algorithm combined with CG method is presented in this section.

Running CG method for a random guess generated ψ = (.117, .1435) this guess is then converted

to local parameter space and PSO algorithm with 10 particles is used. This can be seen in Figure

5.10, note that in the figure every particle is initialized in the local parameter space.

Table 5.9: Hybrid optimizer PSO2CG1

Iteration (CG+PSO) Initial Pressure
ψ1 = pr

Initial Density
ψ2 = ρr

Error in ψ1 Error in ψ2

6+7=13 .106 .131 6.1 % 4.16 %

Table 5.9 presents results of this algorithm. The algorithm ended up being stable, com-

putationally inexpensive and with low error. To note PSO for this case converged in 7

Chapter 5. Results and discussions 36

iterations contrary to 170 iteration when used alone, saving ((170− 7)× 10 = 1630) forward

computations. Hence making this method most stable, economical and efficient for

ISTP.

To present summary of the two hybrid algorithms in comparison to PSO and CG methods Table

5.10 has been presented.

Table 5.10: Rating of hybrid algorithms

CG PSO PSO1CG2 PSO2CG1

iterations

Error

Stability

Computational time

5.7 Conclusion

In the field of inverse computational science, problems concerning fluid mechanics still remain

in its infancy. In order to explore deeper in this underdeveloped area, inverse problem in shock

tubes, a nonlinear fluid phenomenon governed by non linear hyperbolic PDE, has been analyzed

and then solved. Traditionally inverse problems are being extensively used with elliptic PDEs

(Thermal studies) mostly concerning use of matrix system inversion; in this project an effort

has been made to step out of this common notion and research inverse problems in a counter

field (non matrix and non elliptic). Literature review on the subject of inverse fluid dynamics

concluded that not much work has been done in this field and that there is a need to analyze

how and what in inverse problem theory performs well with fluid systems. In light of this, the

solution of ISTP has presented certain closures that may be followed in future to solve other

inverse fluid system problems.

It was concluded that cost functions are not well behaved (non convex) in the field of inverse

fluid dynamics. In case of ISTP, the analysis revealed that 2D cost functions remain always non

linear. Tests should be run as prerequisite to inverse problem solutions in order to identify the

cost function that is least non linear, in real world this is one out of the several other issues that

governs the position of the sensor. It was established that pressure based cost functions perform

the best among other cost functions. As a rule of thumb the choice of cost function in ISTP has

been established, experimental data should be chosen from a point that does not interact with

the shock. A conclusion was drawn that shock interacting with the data point leads to highly

non linear cost functions, a bad news for any inverse problem solution.

It can be emphasized that right choice of optimization algorithm can make or break the solution.

Every optimization algorithm carried out with ISTP amounted to different outputs hence care

should be taken to carry out the selection wisely. Due to non convexity in the cost it can be

concluded that gradient free optimizers form the best choice to solve the inverse fluid system

problems. The in house PSO1CG2 and PSO2CG1 being the best algorithms to perform in case

of ISTP suggests that optimization algorithms need to be well tailored for every specific case of

inverse fluid problem in order to enhance their efficiency.

Appendix A

Flow Charts

A.1 Terminology

1. Start and Stop:

2. Process:

3. input and output:

4. decision:

5. subroutiens and programs:

6. Do and for loops:

7. comment:

37

Appendix A. Flow Charts 38

A.2 CFD EULER code

start

MODGEN

USERDATA

GRIDGEN

EULER AFZ

POSTPROC

Stop

Subprogram containing

all the variables required

while programming

Subprogram that

creates a GUI to interact

with user for inputs

Subprogram that

generates grid files

Subprogram that Solves

Euler equation using

Finite Volume Method

Subprogram that

allows user to generates

plots and graphs

Appendix A. Flow Charts 39

A.3 Program MODGEN

MODGEN

Module user variables

contains variables

Pl, ρl, Ul, Pr, ρr, Ur, xlength

sloc, CFL, st limiter,..etc

Module constants contains

variables γ,R,A(limiter),.. etc

Module cfdvariables

contains variables

∂x, U1, U2, U3, F1, F2, F3

∂t, nofaces, nocells, p, ρ, u, etc

End MODGEN

Appendix A. Flow Charts 40

A.4 Program USERDATA

USERDATA MODGEN

problem param-

eters pl, ρl, ul

pr, ρr, ur

xlength, xinitial

, ylength, sloc

CFD parameters

CFL, T imeschm,

limiter, ε, A

make file data.input con-

taining problem parameters

make file data.cfd con-

taining CFD parametrs

End USERDATA

link

Appendix A. Flow Charts 41

A.5 Program GRIDGEN

GRIDGENMODGEN USERDATA

cells, xlength,

ylength,

xinitial, yinitial

dx = xlength−xinitial
nocellsx

dy = ylength−yinitial
nocellsy

Do for i=1,nocellsx

Do for j=1,nocellsy

create node points with location

(x(i,j),y(i,j)) x(i, j) = xinitial +

i× dx y(i, j) = yinitial + j × dy

write output unstuc-

tured grid file grid

displaygrid on

screen using

GNUplot and

DISLIN library

End GRIDGEN

Link Link

Appendix A. Flow Charts 42

A.6 Program EULER

EULER AFZMODGEN USERDATA

GRIDGEN DISLIN

Read data from data.cfd

CFL, ε, limiter, timeschm

iter, dx

Read data from data.input

pl, pr, ul, ur, ρl, ρr, xlength

sloc, stoptime, xinitial

Read grid file grid ,Read

nocellsx, nocellsy, nofaces

Allocate arrays

X,Y, p, ρ, U, U1, U2, U3

F1, F2, F3

Do for

i=1,nonodesx

If x < sloc
initilize p =

pl, ρ = ρl u = ul

initilize p =

pr, ρ = ρr u = ur

initialize time = 0.0

; dx = xlength
nonodesx−2

Link Link

Link Link

YES NO

Appendix A. Flow Charts 43

do for

iter=1,maxiter

calculate dt=min(CFL.dx√
γT .|u|)

time=time+dt

do for

j=1,timeschm

call subroutine

GRADEINT PRIMITIVE

calculates for all

nodes
dp
dx
, du
dx
,
dρ
dx

hence calculating space

discritization dU
dx

if

limiter = 1

call subroutine

VENKATA LIMITER

call subroutine MIN-

MAX LIMITER

uses minmax limiting

scheme to finding parameter

φ(artificial viscosity)

uses venkatakrishnan

limiting scheme to

finding parameter

φ (artificial viscosity)

call subroutine VAN lEER

flux discritization calcultion

of dF
dx

based on

van leers scheme

Appendix A. Flow Charts 44

do for

k=1,nonodesx

call subroutine

RUNGE KUTTA

update values of

ρ, u, p, U1, U2, U3

update values of U1old = U1,

U2old = U2, U3old = U3

if time ≥
stoptime

write file output.data containg

row wise values of x, p, u, ρ, T

end EULER AFZ

temporal discritization

calculation of dU
dt

based

on Runge Kutta scheme

NO

YES

Appendix A. Flow Charts 45

A.7 Exact solution solver- Program EULER EAFZ

EULER EAFZ MODGENGRIDGEN

Read data from data.input

pl, pr, ul, ur, ρl, ρr, xlength

sloc, stoptime, xinitial

Read grid file grid ,Read

nocellsx, nocellsy, nofaces

Tl = pl
ρl

;al =
√
γ.Tl;

dx = tubelength/Nocellsx

Do while error < ε

calculate mach number Ms

using Newton Rapsons method

with compatibility equation

U2 = U1 = 2
γ+1 (Ms + 1

Ms)

x1 = sloc − al.Stime; x2 =

sloc−(U2−a2).Stime x3 = sloc−
U2.Stime ; x4 = sloc−Ms.Stime;

Open file exact.solution

containing columns X, P, ρ,U

Appendix A. Flow Charts 46

Do for i=1,nonodes

x = (xinitial + dx
2) + (i − 1).dx

if x < x1
write in ex-

act.solution X,Pl, ρl, Ul

if x1 <

x < x2

Ue = 2
γ+1 (al + x−Sloc

st
), ae =

al − (γ−1)Ue
2 , Pe = pl(

ae
al

)
2γ
γ−1 ,

ρe = ρl(
pe
pl

)
1
γ ; write in

exact.solution X,Pe, ρe, Ue

if x2 <

x < x3

ρ2 = ρl(
P1

Pl
)

1
γ , P2 = P1 =

pr
2γMs2

γ+1 −
γ−1
γ+1 U1 = U2 =

2
γ+1 (Ms − 1

Ms) write in

exact.solution X,P2, ρ2, U2

if x3 <

x < x4

rite in exact.solution

X,P1, ρ1, U1

NO

NO

NO

YES

YES

YES

YES

Appendix A. Flow Charts 47

if x ≥ x4
write in exact.solution

X,Pr, ρr, Ur

End

NO

YES

NO

Appendix A. Flow Charts 48

A.8 Inverse Solution solver- Program INVERSE ISTP

EULER AFZEULER EAFZ

Construct cost function

j(F (0)) = ‖Y − Ymo‖2

Exact solution code

simulates experimental

results for p, u

Intial conditions

ψ = (pr, ρr)

Check

stopping

criteria

Optimize for next

guess of ψ = (pr, ρr)

New optimized val-

ues of ψ = (pr, ρr)

post process the solution

at current pr, ρr soulu-

tion from EULER AFZ

display GUI of re-

sults using DISLIN

End

YmoY

NO

YES

Appendix B

Algorithms

B.1 Gauss Newton Algorithm

Algorithm 1: Gauss Newton Method

input : Y = [y1, y2, y3,ydim(Y)] experimental points, ε step size
Let k = 0, ψ0 be the starting guess for parameter vector ψ

while stopping criteria is not met do
k = k + 1
Run Forward model to obtain Ymo
Error Vector E = Y − Ymo
for parameters i = 1, dim(ψ) do

ψki = ψki (1 + ε)
Run Forward model to obtain Y +

mo

for measurements j = 1, dim(Y) do

sensitivity Matrix Sji =
Y +
mo−Ymo
εψki

Solve δψ = −[STS]−1STE
ψki = ψki + δψ

49

Appendix B. Algorithms 50

B.2 Simplex Algorithm

Algorithm 2: Simplex Method

input : (dim(ψ) + 1) = 3 random values in parameter space
Run Forward model to obtain cost function j at the points

while stopping criteria is not met do
k = k + 1
Sorting: sort the points in descending order j(u) < j(v) < j(w)
Mid Point vector M = 1

2 [u+ v]
Reflection [R] = 2[R]−M

if j(R) < j(v) then
Perform case (i) { either reflect or extend };

else
Perform case (ii){ either contract or shrink };

Begin case(i)
if j(u) < j(R) then

Replace W with R;
else

Expansion E = 2R−M ;
if j(E) < j(w) then

Replace w with E;
else

Replace w with R;

End case(i)

Begin case(ii)
if j(R) < j(w) then

Replace W with R;
else

Contraction: C1 = 1
2 [R+M];C2 = 1

2 [W +M];
if j(C) < j(w) then

Replace w with C;
else

Shrinkage: u = M ;w = 1
2 [w + v];

End case(ii)

Appendix B. Algorithms 51

B.3 Particle swarm optimization

Algorithm 3: Particle Swarm Algorithm

input : C1, C2, ω Scalar constant
for particle k = 1,maxparticles do

Initialize position xpk = [Y1, Y2, .., Ydim(ψ)]
P.best particles best position p.bestk = xpk
G.best global best position j(G) > j(p.bestk)
Initialize velocity V pk = [δY1, δY2, .., δYdim(ψ)]

while stopping criteria is not met do
for particle k = 1,maxparticles do

Generate two random numbers based on normal distribution (u(0, 1)) R1, R2
V pk = ωV pk + C1R1(p.bestk − xpk) + C2R2(G− xpk)
xpk = xpk + V pk
update P.best if j(xpk < j(p.bestk)) update G.best if j(xpk < j(G))

B.4 Steepest Gradient Method

Algorithm 4: Steepest Gradient Method

input : Y = [y1, y2, y3,ydim(Y)] experimental points,m, ε Scalar constant
k = 0,initialize φ = [φ1, φ2, .., φdim(ψ)] Vector with random guess values
Run Forward model to obtain Ymo
jold = 1

2 [Y − Ymo]2

while stopping criteria is not met do
k = k + 1
α = 1

mk
for parameter i = 1, dim(ψ) do

ψi = φi + ε
Run Forward model to obtain Ymo
jnew = 1

2 [Y − Ymo]2

O(ψi) = jnew−jold
ε

for parameter i = 1, dim(ψ) do

φi = φi − α O(ψi)
‖O(ψ)‖

ψ = φ
Run Forward model to obtain Ymo
jold = 1

2 [Y − Ymo]2

Appendix B. Algorithms 52

B.5 Conjugate gradient Method

Algorithm 5: conjugate Gradient Method

input : Y = [y1, y2, y3,ydim(Y)] experimental points,ε Scalar constant
k = 0,initialize φ = [φ1, φ2, .., φdim(ψ)] Vector with random guess values
ψ0 = φ
Run Forward model to obtain Ymo
jold = 1

2 [Y − Ymo]2
Calculate Oj(ψ0)
Direction of descent dold = −Oj(ψ0)

while stopping criteria is not met do
k = k + 1
if k = 1 then

β = 0;
else

β = Oj(ψk)Oj(ψk)
Oj(ψk−1)Oj(ψk−1)

;

for parameter i = 1, dim(ψ) do
ψi = φi + ε
Run Forward model to obtain Ymo
jnew = 1

2 [Y − Ymo]2

Oji = jnew−jold
ε

with ψ = φ calculate Oj(ψk)
dnew = −Oj(ψk) + βdold
ψ = φ
Run Forward model to obtain Y −mo
ψ = φ+ ε dnew

‖dnew‖
Run Forward model to obtain Y +

mo

Y ′ = Y +−Y −√∑
(ψ−φ)

α = −Y
′(Y −−Y)
Y ′Y ′

ψk+1 = φ+ αdnew
φ = ψ
dold = dnew
calculate gradient Oj(ψk)

Appendix B. Algorithms 53

B.6 Newton Rapsons Algorithm

Algorithm 6: Newton Rapsons Algorithm for calculating Ms

input : k = 0 ; Mk
s = 1.0 initial guess value for Mach number

input : ε convergence criteria
calculate the scalar value of compatibility equation f(Mk

s)

while stopping criteria is not met do
k = k + 1
calculate the scalar value of derivative compatibility equation f ′(Mk

s)

Mk
s = Mk−1

s − f(Mk
s)

f ′(Mk
s)

calculate the scalar value of compatibility equation f(Mk
s)

if f(Mk
s) ≤ ε then

Exit iterations;
else

continue the iteration ;

B.7 Algorithm for code EULER AFZ

Algorithm 7: Algorithm for program EULER AFZ

Load Modules MODGEN , DISLIN , USERDATA
Read Grid File from GRIDGEN
Initialize grid points with initial value of primitive variables p, ρ, u
Initialize grid points with states U1 = f(p, ρ, u), U2 = f(p, ρ, u), U3 = f(p, ρ, u)

while Time t ≤ stoptime do
calculate δt with δt = f(CFL, u, a)
t = t+ δt
calculate gradients (∂u∂x ,

∂ρ
∂x ,

∂p
∂x) at each node

Reconstruct the gradients using Venkatakrisnan limiting
calculate fluxes F = f(U) using Van Leers scheme
calculate states at next time step t = t+ δt using 4th order Runge Kutta scheme
Update all the states (U) and primitives (p, ρ, u) with new values

output the results in a text file

Appendix C

EULER Solutions- Exact and

Numerical

C.1 Analytic solution for Euler equation

Analytical solution of the flow inside the shock tube follows the mathematics and physics that

has been discussed in chapter 2. Flow is divided into four uniform sections i.e., the right (R) and

the left (L) region maintaining constant parameters (velocity, density, temperature and pressure)

that existed as initial conditions and regions in between them denoted by region (1) and (2).

To analyze these regions in (x, t) plane is considered see Figure C.1. All waves at time t = 0

are centered at the diaphragm (x = x0, t = 0). Shock and the contact discontinuity propagate

with constant velocities moving right and are displayed as lines in (x, t) plane. Expansion waves

stretches in zone (E) inside which the flow parameters change linearly.

Figure C.1: Diagram showing (x, t) plane of the analytical solution for shock tube (left).
Characteristics used in calculating the analytical solution (right).

54

Appendix C. Euler Solutions- Exact and Numerical 55

Dimensionless parameters in regions (R) and (L) are

Region (R): ur = 0, pr = 1/γ, ρr = 1, Tr = 1/γ, ar = 1 (C.1)

Region (L): ur = 0, pl, ρr, Tr, ar (given usually) (C.2)

As Euler equation was proven to be hyperbolic in nature (refer section 2.5), there is a need to

take into account propagation of information along the characteristic lines, hence the following

mathematics is applied across the discontinuities

1. Discontinuity due to normal shock standing between regions (R) and (1) is governed by

Rankine Hugoniot Equations (for example, see, Hirsch [1]):

p1

pr
=

2γ

γ + 1
M2
s −

γ − 1

γ + 1
(C.3)

ρr
ρ1

=
2

γ + 1

1

M2
s

− γ − 1

γ + 1
(C.4)

u1 =
2

γ + 1

(
M2
s −

1

M2
s

)
(C.5)

Here us is the dimensionless speed of Normal shock and Ms is the corresponding Mach

number.

2. Contact discontinuity standing between regions (1) and (2) is only discontinuity of Tem-

perature and density, pressure and velocity remain unaffected by this discontinuity. So for

this

u2 = u1, p1 = p2 (C.6)

3. To have a link of parameters in regions (2) and (L), consider a point P (x, t) in region (2) the

characteristic lines passing through this point can be seen in Figure C.1. It can be observed

that only two characteristic curves C0 and C+ run across the expansion fans in order to

exchange information from region (L). Using ul = 0 and the expression for invariant for

the two curves C0 and C+, the following relation is obtained (for more details, see, [21])

ρ2

ρl
=

(
p2

pl

)1/γ

, u2 =
2

γ − 1
(al − a2) (C.7)

4. By combining all the equations mentioned above, compatibility equation for Ms can be

obtained (for more details, see, [21])

Ms −
1

Ms
= al

γ + 1

γ − 1

{
1−

[
pr
pl

(
2γ

γ + 1
M2
s −

γ − 1

γ + 1

)] γ−1
2γ

}
(C.8)

Generally some iterative algorithm (Newton-Rapsons method) is used in order to solve the

compatibility equation for the values of Ms. The value of Ms obtained by the iterative

algorithm can be used to obtain all parameter values in the region space (1) and (2).

For analytical solution abscissa values x1, x2, x3, x4 in Figure C.1 at any time t should be known.

In order to do so we proceed as follows:

Appendix C. Euler Solutions- Exact and Numerical 56

• calculation for x1 and x2: The left running characteristic curve C− originating from point

B forms the left boundary for expansion fan area (E) (see Figure 2.4), this curve belongs

to region (L) i.e. slope of curve will be given by dx/dt = al. Similarly the right running

characteristic curve C+ that also originates from point B forms the right boundary for

expansion fan area (E), this curve belongs to region (1) i.e. slope of curve will be given by

dx/dt = u2 − a2. Hence values of x1 and x2 are given as

x1 = x0 − alt, x2 = x0 + (u2 − a2)t (C.9)

• calculation for x3: As it was mentioned earlier the contact discontinuity travels with a

constant speed u1 = u2, so

x3 = x0 + u2t (C.10)

• calculation for x4: Since the normal shock also propagates with a constant dimensionless

velocity us = Ms, so

x4 = x0 +Mst (C.11)

In order to complete the analytical flow analysis, mathematics flow inside the expansion fan area

needs to be developed: considering a point m(x, t) in the region (E), here x1 ≤ x ≤ x2. As this

point belongs to characteristic curve C− originating form B, slope at the point will be given by

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
a

ra
m

e
te

rs

Location x

velocity
pressure

density

Figure C.2: Figure showing parameters (p, ρ, u)
varying with location (x) in a shock tube at time t.
Note that the figure is produced for initial conditions
of pl = 1,ρl = 1, ul = 0 and pr = .1, ρr = .125, ur =
0 these are same conditions used by Sods shock tube
experiment details of which are mentioned in the

paper [22]

(x− x0)

t
= ue − ae

where ue and ae are the velocity and speed

of sound in the expansion fan area (E). Us-

ing characteristic curve C+ that passes from

region (L),

al = ae +
γ − 1

2
ue

Combining the two relations flow solution in

region (E) can be obtained

ue =
2

γ + 1

(
al +

x− x0

t

)
(C.12)

ae = al − (γ − 1)
ue
2

(C.13)

pe = pl

(
ae
al

) 2γ
γ−1

(C.14)

From the mathematics detailed in this section a FORTRAN code is developed in order to generate

the exact solution for a shock tube (EULER EAFZ). A flow chart explaining the this exact

solution solver is given in Appendix A.7. Newton-Rapsons algorithm to solve the compatibility

equation C.8 for values of Ms is defined in Appendix B.6. Some of the results produced by the

exact solver are given in the Fig C.2.

Appendix C. Euler Solutions- Exact and Numerical 57

C.2 Finite volume formulation for Euler equation

In FVM, computational domain is discretized by dividing it into number of non overlapping

finite volumes. These finite volumes contain the control points (generally centroids) that holds

information about states (U) and the faces of these volumes hold information of the fluxes (F).

Cell centered approach has been chosen as method to chose the finite volumes, grid itself forms

the finite volume and centroids of which form the control point Figure C.3 below depicts the

terminology and the kind of finite volume used to solve the shock tube problem.

Figure C.3: Finite volume cell i sharing interface J with neighboring cell j

As FVM is an integral formulated scheme, integrating equation 2.6 over finite volume i∫
Ωi

(
∂U

∂t
+
∂F

∂x

)
dΩ = 0 (C.15)

Using Gauss Divergence theorem to convert volume integral on flux term to surface integral,∫
Ωi

∂U

∂t
dΩ +

∮
Γi

F.dΓ = 0, (C.16)

introducing cell average quantity,

Ui =
1

Ωi

∮
Ωi

UdΩ, (C.17)

Expressing surface integral in discretized form,

dUi
dt

= − 1

Ωi

∑
J

F⊥J 4 SJ (C.18)

Here F⊥J forms interracial flux through finite volume interface J . Above mentioned equation is

now a ODE and can be solved using the well known Runge-Kutta method.

C.2.1 Flux discretization

There exists many schemes to evaluate the interracial fluxes F⊥J , many of these schemes (Lax-

Fridrich, Richtmyer, MacCormack, Steger-Warming, Van Leer, Godunov, Osher & Roe schemes)

have been thoroughly investigated in article [38]. Each of these schemes have one or the other

advantages. For this study the in order to develop the Euler solver, the Van Leer’s scheme

[39] is chosen in order to evaluate interracial fluxes F⊥J . Van Leer scheme is an upwinding

Appendix C. Euler Solutions- Exact and Numerical 58

scheme which work quite well in comparison to other schemes, i.e. low dispersion error and less

dissipation of solution, the scheme performs quite well at the discontinuities (for details, see,

[38]).

In order to calculate interfacial applying upwinding differencing at the interface J .

F⊥J = F⊥L + F⊥R, (C.19)

According to Van Leer’s scheme flux vector splitting is given by the following conditions,

If M⊥m ≤ −1, then

F⊥m = 0 (C.20)

Else if − 1 < M⊥m < 1, then

F⊥m =

ṁm

ṁm[u+ (2−M⊥)anx/γ]

ṁmH

m

(C.21)

Else if M⊥m ≥ 1, then

F⊥m =

ρu⊥

ρuu⊥ + pnx

(E + p)u⊥

m

(C.22)

Here ṁm = ρmam(1+M⊥m)2

4 and m is either L or R corresponding left and right face.

At a particular time step fluxes are given by equations (C.20 – C.22), these fluxes provide the

states U using equation C.18. In order to calculate the states U and primitive variables (ρ, u, p)

at next time step Runger Kutta scheme is used to calculate the ODE equation C.18.

C.2.2 Runge-Kutta method for temporal discretization

Runge Kutta method is used in order to get the approximate solution of a ODE. Here in this

case it is used to solve the temporal differential that arises in FVM equation C.18. RK scheme

has been used for solving Euler equations and have been investigated by [40]. A 4th order RK

scheme is used to evaluate the term dU
dt . In general form nth stage Runge Kutta scheme is as

follows:

U1 = U t

U2 = U t + δtα12F
1

U j = U t + δt

j−1∑
k=1

αkjF
k

U t+δt = U t + δt

n∑
k=1

βkF
k (C.23)

Appendix C. Euler Solutions- Exact and Numerical 59

Here F k = f(Uk) Choice of βk often applied is

βi = 0 for i = 1, ...,K − 1 and βk = 1

For a 4th order RK scheme, the coefficients are given by

α1 =
1

2
α3 =

1

2
α2 = 1

β1 =
1

6
β2 = β3 =

1

3
β4 =

1

6

leads to

U1 = U t

U2 = U t +
1

2
δtF 1

U3 = U t +
1

2
δtF 2

U4 = U t + δtF 3

U t+δt = U t +
δt

6
(F 1 + 2F 2 + 2F 3 + F 4) (C.24)

By knowing the value of δt we can easily predict the solution at time t+δt, as the Euler equation

to be solved is transient in nature, the time step δt is a function of CFL number and is given by

δt =
CFL 4 x

maxcells(|uj |+ aj)
(C.25)

were 4x is the cell size, uj and aj are the velocities and local sound speed in the cell j.

C.2.3 Artificial viscosity (slope limiting)

FVM method used to develop the Euler solver is a higher order FVM, hence it will not lead to

monotone solutions. There is no reason to believe that an initial monotonic solution distribution

can become non monotonic during solution evolution. In regions where the flow exhibits dis-

continuities or steep gradients, the reconstructed profiles produce suspicious oscillations. This

can lead to loss in robustness of the solution methodology in an iterative time stepping proce-

dure. The condition on the monotonicity of the reconstructed profile within a given finite volume

requires that the reconstructed state should not exceed the maximum and minimum values spec-

ified by the cell average states in its neighboring finite volumes. Countering this problem can be

achieved by introducing a slope limiter in the reconstruction process. In the present work, the

limiting procedure proposed by Venkatakrishnan [23] is employed.

Appendix C. Euler Solutions- Exact and Numerical 60

Consider cell i sharing its face with neighbor j. Let Ui and Uj be the cell averaged states in cell

i and j respectively. Defining

δ+ = maxj(Uj − Ui); (C.26)

δ− = minj(Uj − Ui); (C.27)

δ = Uj − Ui (C.28)

The condition on limiting according to venkatakrishnan is defined by

if δ ≥ 0 then

δp = δ+ δn = δ (C.29)

if δ < 0 then

δp = δ− δn = δ (C.30)

With above definitions, limiting coefficient φJ for the face J is given by

φJ =
((δp)2 + ε)δn + 2(δn)2δp

(δp)2 + (δn)2 + δnδp + ε
(C.31)

Here ε is the limiting parameter with ε→∞ indicating no limiting. This is the value φ calculate

for cell i, there exists a similar calculation procedure for value of φ for cell j. The final limiting

coefficient is then given by

φi = minJ(φJ) (C.32)

using this the reconstructed gradients (limiting gradients) are computed as

(OU)i,limited = φi(OU)i (C.33)

C.2.4 Steps involved in FVM solution for Euler equation

Following steps summarize the steps involved to achieve FVM solution in Euler equations

1. Reconstruction: FVM state update formula (see equation 2.6) returns cell averaged states

U , resulting in loss of information of solution variation in the cell. This information is

recovered using reconstruction procedure (see section C.2.3).

2. Flux computing Using the reconstructed gradients inviscid fluxes are computed, any suit-

able scheme is used to accomplish so (see section C.2.1).

3. Solution evolution Once fluxes are calculated solution is updated by using Runge Kutta

time marching strategy (see section C.2.2).

Appendix C. Euler Solutions- Exact and Numerical 61

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-5 -4 -3 -2 -1 0 1 2 3 4 5

D
e

n
s
it
y

Location x

CFD

Exact

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

V
e

lo
c
it
y

Location x

CFD

Exact

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
re

s
s
u

re

Location x

CFD

Exact

Figure C.4: Figure shows parameters (p, ρ, u) varying with location (x) in a shock tube at
time t > 0 in comparison with the exact solution . Note that the figure is produced for initial
conditions of pl = 1,ρl = 1, ul = 0 and pr = .1, ρr = .125, ur = 0 these are same conditions

used by Sods shock tube experiment details of which are mentioned in the paper [22]

The above mentioned 3 step strategy is used to develop the Euler solver (EULER AFZ), the

algorithm of which is given in appendix B.7. The solver developed is a FVM solver that can

handle unstructured grids. Figure C.4 gives some results from the solver used to solve the

classic Sods Shock tube case. Note that the solver is a modular program, it needs MODGEN

(FORTRAN code to generate variable containing module), USERDATA (GUI based FORTRAN

code to interact with user for user input) and GRIDGEN (GUI based 1D unstructured grid

generate to generate grid file) to produce the final solution for the shock tube problem. A flow

chart explaining the procedure to use EULER AFZ is shown in appendix A.2. Flow charts

explaining Module generator MODEGEN, user data interface generator USERCFD , the grid

generator GRIDGEN and FVM CFD code EULER AFZ are given in Appendix A.3, A.4, A.5

and A.6 respectively.

Bibliography

[1] Charles Hirsch. Chapter 1 - the basic equations of fluid dynamics. In Charles Hirsch,

editor, Numerical Computation of Internal and External Flows (Second Edition), pages

27 – 64. Butterworth-Heinemann, Oxford, second edition edition, 2007. ISBN 978-0-

7506-6594-0. doi: http://dx.doi.org/10.1016/B978-075066594-0/50041-2. URL http:

//www.sciencedirect.com/science/article/pii/B9780750665940500412.

[2] A. Dadone and B. Grossman. Progressive optimization of inverse fluid dynamic design prob-

lems. Computers and Fluids, 29(1):1 – 32, 2000. ISSN 0045-7930. doi: http://dx.doi.org/10.

1016/S0045-7930(99)00002-X. URL http://www.sciencedirect.com/science/article/

pii/S004579309900002X.

[3] Di Liu, Fu-Yun Zhao, Han-Qing Wang, Ernst Rank, and Guang-Xiao Kou. Inverse determi-

nation of building heating profiles from the knowledge of measurements within the turbulent

slot-vented enclosure. International Journal of Heat and Mass Transfer, 55(17–18):4597 –

4612, 2012. ISSN 0017-9310. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.04.

015. URL http://www.sciencedirect.com/science/article/pii/S001793101200258X.

[4] A.I. Korotkii and I.A. Tsepelev. Direct and inverse problems of high-viscosity fluid dy-

namics. Automation and Remote Control, 68(5):822–833, 2007. ISSN 0005-1179. doi:

10.1134/S0005117907050098. URL http://dx.doi.org/10.1134/S0005117907050098.

[5] Albert Tarantola. Inverse problem theory and methods for model parameter estimation.

siam, 2005.

[6] V.Y. Arsenin A.N. Tikhonov. Solutions of Ill-Posed Problems. V.H. Winston and Sons,

Washington, D.C., 1977.

[7] H.R. Orlande M.N. Ozisik. Inverse Heat Transfer: Fundamentals and Applications. Taylor

and Francis Group, CRC Press, New York, NY, 2000.

[8] D. Maillet H.R. Orlande, O. Fudym and R M Cotta. Thermal Measurements and Inverse

Techniques. Taylor and Francis Group, Boca Raton, Fl, 2011.

[9] D Knight, Q Ma, T Rossman, and Y Jaluria. Evaluation of fluid-thermal systems by

dynamic data driven application systems-part ii. In Computational Science–ICCS 2007,

pages 1189–1196. Springer, 2007.

[10] BD Henshall. On some aspects of the use of shock tubes in aerodynamic research. Citeseer,

1957.

62

http://www.sciencedirect.com/science/article/pii/B9780750665940500412
http://www.sciencedirect.com/science/article/pii/B9780750665940500412
http://www.sciencedirect.com/science/article/pii/S004579309900002X
http://www.sciencedirect.com/science/article/pii/S004579309900002X
http://www.sciencedirect.com/science/article/pii/S001793101200258X
http://dx.doi.org/10.1134/S0005117907050098

Bibliography 63

[11] P. Vieille. Sur les discontinuites produites par la detente brusque de gas comprimes. Comptes

Rendus 129, 1228, 68(5), 1899.

[12] William Payman and Wilfred Charles Furness Shepherd. Explosion waves and shock waves.

vi. the disturbance produced by bursting diaphragms with compressed air. Proceedings

of the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1006):

293–321, 1946.

[13] Wayland Griffith. Shock-tube studies of transonic flow over wedge profiles. Journal of the

Aeronautical Sciences (Institute of the Aeronautical Sciences), 19(4), 2012.

[14] J Lukasiewicz. Shock tube theory and applications. National Aeronautical Establishment,

1952.

[15] Abraham Hertzberg. A shock tube method of generating hypersonic flows. Journal of the

Aeronautical Sciences (Institute of the Aeronautical Sciences), 18(12), 2012.

[16] A Hertzberg. The application of the shock tube to the study of the problems of hypersonic

flight. Journal of Jet Propulsion, 26(7):549–554, 1956.

[17] RK Hanson and DF Davidson. Recent advances in laser absorption and shock tube methods

for studies of combustion chemistry. Progress in Energy and Combustion Science, 44:103–

114, 2014.

[18] Stephen Downes, Andy Knott, and Ian Robinson. Towards a shock tube method for the

dynamic calibration of pressure sensors. Philosophical Transactions of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, 372(2023):20130299, 2014.

[19] II Glass. A theoretical and experimental study of shock-tube flows. Journal of the Aero-

nautical Sciences (Institute of the Aeronautical Sciences), 22(2), 2012.

[20] Abraham Hertzberg. A shock tube method of generating hypersonic flows. Journal of the

Aeronautical Sciences (Institute of the Aeronautical Sciences), 18(12), 2012.

[21] Ionut Danaila, Pascal Joly, Sidi Mahmoud Kaber, and Marie Postel. An introduction to

scientific computing: Twelve computational projects solved with MATLAB. Springer Science

& Business Media, 2007.

[22] Gary A Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic

conservation laws. Journal of computational physics, 27(1):1–31, 1978.

[23] Venkat Venkatakrishnan. Convergence to steady state solutions of the euler equations on

unstructured grids with limiters. Journal of computational physics, 118(1):120–130, 1995.

[24] Andre Nikolaevich Tikhonov and Vasili Yakovlevich Arsenin. Solutions of ill-posed problems.

Vh Winston, 1977.

[25] Jacques Hadamard. Lectures on Cauchy’s problem in linear partial differential equations.

Courier Corporation, 2014.

[26] James V Beck, Ben Blackwell, and Charles R St Clair Jr. Inverse heat conduction: Ill-posed

problems. James Beck, 1985.

Bibliography 64

[27] Oleg M Alifanov. Inverse heat transfer problems. Springer Science & Business Media, 2012.

[28] P. Le Masson Y. Favennec. Lecture 9: Large scale optimization for function estimation. In

Thermal mesurements and inverse techniques,Advanced Spring School, Biarrtiz. METTI,

2011.

[29] A. Holder, editor. Mathematical Programming Glossary. INFORMS Computing Soci-

ety, http://glossary.computing.society.informs.org, 2006–14. Originally authored

by Harvey J. Greenberg, 1999-2006.

[30] Xin-She Yang and Suash Deb. Engineering optimisation by cuckoo search. International

Journal of Mathematical Modelling and Numerical Optimisation, 1(4):330–343, 2010.

[31] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business

Media, 2006.

[32] Philip E Gill, Walter Murray, and Margaret H Wright. Practical optimization. Academic

press, 1981.

[33] Godfrey C Onwubolu and BV Babu. New optimization techniques in engineering, volume

141. Springer, 2013.

[34] John A Nelder and Roger Mead. A simplex method for function minimization. The computer

journal, 7(4):308–313, 1965.

[35] James Kennedy. Particle swarm optimization. In Encyclopedia of Machine Learning, pages

760–766. Springer, 2010.

[36] Maurice Clerc. Particle swarm optimization, volume 93. John Wiley & Sons, 2010.

[37] Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving

linear systems. 1952.

[38] H. Nishikawa. A comparison of numerical flux formulas for the euler equations. Math 671

final assignment, pages 120–130, 1998.

[39] Bram Van Leer. Flux-vector splitting for the euler equations. In Eighth international

conference on numerical methods in fluid dynamics, pages 507–512. Springer, 1982.

[40] Antony Jameson, Wolfgang Schmidt, Eli Turkel, et al. Numerical solutions of the euler

equations by finite volume methods using runge-kutta time-stepping schemes. AIAA paper,

1259:1981, 1981.

http://glossary.computing.society.informs.org

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Introduction to Inverse problems
	1.2 Introduction to CFD
	1.3 Introduction to inverse fluid dynamics
	1.4 Introduction to Inverse problem in a shock tube

	2 Shock Tube
	2.1 Introduction
	2.2 Physical description of Shock tube
	2.3 History of Shock tube
	2.4 Qualitative analysis of flow inside shock tube
	2.5 Mathematics Involved in shock tube
	2.6 Analytic solution for Euler equation
	2.7 Numerical Modeling of Euler equation (CFD)

	3 Inverse problems
	3.1 Inverse problems an introduction
	3.2 Inverse problems- well posed or ill posed
	3.3 Inverse problems- types
	3.4 Inverse problem- solving inverse shock tube problem
	3.4.1 Cost function
	3.4.2 Method to solve the inverse shock tube problem
	3.4.3 Stopping criteria

	4 Optimization
	4.1 Optimization- Introduction
	4.2 Zero order n-dimensional optimization
	4.3 Gradient type n-dimensional optimization methods
	4.4 Gauss-Newton optimization
	4.5 Simplex or Nedler-Mead optimization
	4.6 Particle swarm optimization
	4.7 Steepest gradient optimization
	4.8 Conjugate gradient optimization

	5 Results, Discussions and Conclusions
	5.1 Problem Data
	5.2 Some prerequisite results
	5.3 One parameter estimation problem
	5.4 Two parameter estimation problem
	5.4.1 Gauss-Newtons algorithm
	5.4.2 Nedler-Mead algorithm (Simplex Method)
	5.4.3 PSO algorithm
	5.4.4 Steepest gradient method
	5.4.5 Conjugate Gradient Method

	5.5 Summary of two parameter estimation
	5.6 Hyprib algorithm
	5.6.1 PSO1CG2
	5.6.2 PSO2CG1

	5.7 Conclusion

	A Flow Charts
	A.1 Terminology
	A.2 CFD EULER code
	A.3 Program MODGEN
	A.4 Program USERDATA
	A.5 Program GRIDGEN
	A.6 Program EULER
	A.7 Exact solution solver- Program EULER_EAFZ
	A.8 Inverse Solution solver- Program INVERSE_ISTP

	B Algorithms
	B.1 Gauss Newton Algorithm
	B.2 Simplex Algorithm
	B.3 Particle swarm optimization
	B.4 Steepest Gradient Method
	B.5 Conjugate gradient Method
	B.6 Newton Rapsons Algorithm
	B.7 Algorithm for code EULER_AFZ

	C EULER Solutions- Exact and Numerical
	C.1 Analytic solution for Euler equation
	C.2 Finite volume formulation for Euler equation
	C.2.1 Flux discretization
	C.2.2 Runge-Kutta method for temporal discretization
	C.2.3 Artificial viscosity (slope limiting)
	C.2.4 Steps involved in FVM solution for Euler equation

	Bibliography

